

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ASPLOS’12, March 3–7, 2012, London, England, UK.
Copyright © 2012 ACM 978-1-4503-0759-8/12/03…$10.00.

Reflex: Using Low-Power Processors in Smartphones
without Knowing Them

Felix Xiaozhu Lin, Zhen Wang, Robert LiKamWa, and Lin Zhong

Rice University
{xzl, zhen.wang, roblkw, lzhong}@rice.edu

Abstract
To accomplish frequent, simple tasks with high efficiency, it is
necessary to leverage low-power, microcontroller-like processors
that are increasingly available on mobile systems. However, exist-
ing solutions require developers to directly program the low-
power processors and carefully manage inter-processor communi-
cation. We present Reflex, a suite of compiler and runtime tech-
niques that significantly lower the barrier for developers to lever-
age such low-power processors. The heart of Reflex is a software
Distributed Shared Memory (DSM) that enables shared memory
objects with release consistency among code running on loosely
coupled processors. In order to achieve high energy efficiency
without sacrificing performance much, the Reflex DSM leverages
(i) extreme architectural asymmetry between low-power proces-
sors and powerful central processors, (ii) aggressive compile-time
optimization, and (iii) a minimalist runtime that supports efficient
message passing and event-driven execution. We report a com-
plete realization of Reflex that runs on a TI OMAP4430-based
development platform as well as on a custom tri-processor mobile
platform. Using smartphone sensing applications reported in re-
cent literature, we show that Reflex supports a programming style
very close to contemporary smartphone programming. Compared
to message passing, the Reflex DSM greatly reduces efforts in
programming heterogeneous smartphones, eliminating up to 38%
of the source lines of application code. Compared to running the
same applications on existing smartphones, Reflex reduces the
average system power consumption by up to 81%.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management – Distributed Memories; D.4.7 [Op-
erating Systems]: Organization and Design

General Terms Design, Experimentation

Keywords Heterogeneous systems, energy-efficiency, mobile
systems, distributed shared memory

1. Introduction
An emerging, important category of smartphone applications in-
tend to serve their users in the background by sensing the physical
world continuously, e.g., health monitoring, context-aware ser-
vices, and participatory sensing. They, however, can significantly
reduce battery lifetime. The key reason is that existing smart-
phones only expose their powerful central processors to general-
purpose processing, including simple, frequent sensor data proc-
essing. Many researchers have shown that it is necessary to add a

low-power processor to process simple, frequent tasks [1, 29, 34].
Not surprisingly, emerging mobile Application Processors are
including low-power general-purpose cores, e.g., TI OMAP4/5
[37, 38], NVIDIA Tegra 2 [26], and Samsung Exynos 4210 [32].
Moreover, sensors intended for mobile devices are also embracing
low-power microcontrollers for in-sensor data processing [27, 36].
The resulting hardware architecture is asymmetric with multiple,
memory-incoherent cores that differ in processing power by or-
ders of magnitudes. In this work, we refer to a traditional power-
ful central processor, e.g., Cortex-A9 on OMAP4, as a central
processor and an added low-power processor, e.g., Cortex-M3 on
OMAP4 as a peripheral processor. Both central and peripheral
processors can be multicore themselves.

Although special APIs and toolkits are available for using pe-
ripheral processors, they require developers to not only explicitly
treat the resulting system as heterogeneous and distributed, but
also explicitly handle inter-processor communication. Not surpris-
ingly, there are very few third-party smartphone applications that
actually leverage peripheral processors to save energy.

Our goal is to relieve developers from directly dealing with the
heterogeneous, distributed nature of the architecture so that they
can easily port legacy applications and develop new ones to lever-
age peripheral processors for energy efficiency. While this goal is
reminiscent of that of programming other heterogeneous, distrib-
uted systems, we face a set of unique challenges when dealing
with smartphones: extreme architectural asymmetry, energy effi-
ciency, and entrenched operating systems and programming mod-
els. Our solution to these challenges is a suite of compiler and
runtime techniques, called Reflex. With Reflex, a developer only
needs to encapsulate the code for a peripheral processor as a spe-
cial class and limit access to system services in the code. Trans-
formed by the Reflex compiler and assisted by the Reflex runtime,
the encapsulated code will be able to run on a peripheral processor
with native efficiency and communicate with the rest of the appli-
cation as if it were also running on a central processor. Reflex is
compatible with mainstream smartphone operating systems. Over
the past two years, Reflex has been evolving and its evolving path
is documented in a technical report [16].

The heart of Reflex is a novel software Distributed Shared
Memory (DSM) design. The DSM allows code on multiple het-
erogeneous processors to easily exchange data, even without a
hardware-coherent memory. While numerous software DSM de-
signs have been in use, the Reflex DSM design is unique in its
focus on energy efficiency and its support of extreme architectural
asymmetry. The Reflex DSM contains multiple technical innova-
tions. First, it maintains architectural energy efficiency by using a
peripheral processor to serve coherence requests in order to keep
more power-hungry ones in sleep. Second, it creates a shared
memory abstraction across processors that differ in processing
power by orders of magnitude, and minimizes the disruption in
frequent data processing on the peripheral processors. Finally, it

employs code instrumentation and aggressive compile-time opti-
mization to greatly improve the DSM performance.

We report a complete implementation of Reflex and its evalua-
tion using smartphone sensing applications that are classic or
reported in recent literature. With minor code changes, Reflex
works for a TI OMAP4430 development platform as well as a tri-
processor mobile platform built with a commercial smartphone
and two microcontrollers. We show that Reflex reduces the aver-
age power consumption of the applications by up to 81% com-
pared to the same applications running on existing smartphones,
where only the central processors are leveraged. The experimental
evaluation also highlights the great development ease provided by
a shared memory: compared to the message passing paradigm, the
DSM reduces the source lines of application code by up to 38%,
with less than 5% source code difference from the legacy counter-
part. Moreover, the Reflex DSM incurs low overhead even in a
16-bit microcontroller, i.e., 25% of ROM, 2.5% of RAM, and 3%
of processing time.

The rest of the paper is organized as follows. We provide the
background and overview of Reflex in Sections 2 and 3, respec-
tively. In Sections 4 to 6, we present the design of the Reflex run-
time, DSM, and compiler support, respectively. We provide the
prototype realization in Section 7 and report evaluation in Section
8. We address related work, discuss how Reflex can be extended,
and conclude in Sections 9 to 11, respectively.

2. Background
We next provide the motivations to Reflex and outline the key
assumptions made by the Reflex design.

2.1 Smartphone Sensing Applications
Smartphones and similar devices are embracing a variety of sen-
sors. An important, emerging category of applications often con-
tinuously use these sensors without user engagement, such as
participatory sensing, context-aware and mHealth applications.
However, such applications are known to be power-hungry even
with very efficient sensors. For example, the accelerometer inside
the Nokia N900 consumes less than 1mW itself when active, yet
the entire smartphone will consume 50–100mW of power when
simply reading the accelerometer at 30Hz, reducing the battery
lifetime to barely acceptable.

The key reason for this inefficiency is that current smartphones
only expose their powerful central processors to third-party pro-
gramming. It is well-known that a lightly utilized powerful proc-
essor is inefficient [10], because its advanced architectural fea-
tures, e.g., deep pipeline, can barely benefit light workloads, but
introduce high static power consumption and high overhead for
power management. On the other hand, frequent tasks featured in
sensing applications are typically very light workloads because
developers often employ a cascaded design that conditions the
execution of a complicated task on the output of a simple task in
order to improve efficiency [19, 28].

2.2 Lower-Power Processors in Mobile Systems
Many have proposed to add low-power peripheral processors to
mobile devices [1, 29, 34, 42] and to wireless sensor nodes [21,
24] in order to process simple, frequent tasks. Mobile Application
Processors are actually embracing low-power cores [26, 30, 32,
37, 38]. Moreover, sensors intended for mobile devices are also
embracing low-power microcontrollers for in-sensor data process-
ing [27, 36]. All result in extremely asymmetric hardware archi-
tecture with the peripheral processors orders of magnitudes
weaker and lower-power than the central processors. This extreme

architectural asymmetry is the key to the energy efficiency of
accomplishing a wide range of workloads. It also has the follow-
ing consequences that drive the design of Reflex.

Multiple Microarchitectures: A peripheral processor may
have a different microarchitecture than a central processor. This
makes solutions relying on a single ISA inadequate. For example,
an ultra-low-power microcontroller core like TI MSP430 is neces-
sary in achieving mWatt power consumption for continuous sens-
ing on smartphones [29]. TI OMAP4 employs ARM Cortex-A9 as
the central processor but ARM Cortex-M3 as the newly added
microcontroller processor. Compared to the Cortex-A9 cores, the
Cortex-M3 cores only support a small subset of instructions while
lacking many advanced features such as SIMD extensions.

Multiple Kernels: The extreme architectural asymmetry also
makes a monolithic kernel impossible to manage all processors.
While the central processor usually runs a smartphone OS like
Android, peripheral processors often run separate kernels opti-
mized for them. For example, an OMAP4-based system runs
SYS/BIOS [39] on its Cortex-M3 cores.

Lack of Hardware-Coherent Memory: Hardware coherence is
difficult for smartphones with extremely asymmetric processors.
Peripheral processors can barely realize a hardware coherence
protocol under tight energy constraint. Furthermore, the micro-
architectural difference between strong and weak cores makes
hardware coherency even less attractive. For instance, TI OMAP4
Cortex-A9 and Cortex-M3 cores physically share non-coherent
memory. To exchange data, the cores of different types need to
copy data to and from the memory, and notify each other with the
hardware mailbox shown in Figure 1.

2.3 Programming Challenge
The system resulting from extreme architectural symmetry is het-
erogeneous and distributed. To leverage peripheral processors, a
developer not only needs to learn a new programming environ-
ment but also needs to carefully manage inter-processor data ex-
change. This is because simple, frequent tasks of sensor data
processing in a sensing application often need to exchange data
with the rest of the application. Examples of such data include
sensing parameters (static or adaptive), intermediate or final re-
sults, and control/status variables. Such data can be read or written
by multiple code parts. Furthermore, the sensor data processing

Figure 1. A TI OMAP4 mobile Application Processor includes
two microcontroller cores based on ARM Cortex-M3 in addition
to the usual, dual-core ARM Cortex-A9. The M3 cores run their
own real-time OS and do not have a coherent memory view with
the A9 cores.

Dual ARM Cortex-
A9

System Bus

Pe
rip

he
ral

Int

erc
on

ne
ct

Dual ARM Cortex-M3

Main
Memory

Cache & MMU Cache & MMU

HW Mailbox

Smartphone OS
(e.g. Android)

Peripheral OS
(e.g. TI SYS/BIOS)

Other Peripherals

task accesses the shared data more frequently than its complicated,
infrequent counterpart, often by orders of magnitude, due to the
cascaded design mentioned in Section 2.1.

Without hardware coherent memory, all existing programming
solutions support data exchange with certain forms of message
passing. With systems reported in [1, 34], the developer has to
explicitly coordinate the data exchange between central and pe-
ripheral processors. To exchange data between a Cortex-A9 core
and a Cortex-M3 core on the TI OMAP4, the developer must use
an inter-processor message passing API called Syslink provided
by TI. Not surprisingly, there are very few third-party smartphone
applications that actually use peripheral processors to save energy.

2.3.1 Problems with Message Passing
Message passing is a programming paradigm where distributed
code parts communicate by explicitly copying messages, being
data or program objects. Programming smartphone sensing with
message passing is a nontrivial task. We next use an example
based on OMAP4 to illustrate the reasons. Figure 2 shows two
code snippets excerpted from a simple sensing application, which
uses messages to exchange data with the Syslink API. The two
code snippets are executed on two different processors, and both
use the samples array. The peripheral processor code, running on
a Cortex-M3 core, fills samples as it acquires sensor readings,
and the central processor code, running on a Cortex-A9 core,
reads samples and clears historical values when necessary.

In the code, message passing exhibits its well-known draw-
backs. First, developers need to synchronize distributed copies of
the same object with a customized communication protocol, (1) (3)
(4) (6) in Figure 2. Due to the discrepancy of ISAs, developers
may need to convert samples among different data formats. For
shared objects containing pointers, e.g., a linked list, the efforts
will be more tedious.

The use of message passing is further complicated by the ex-
treme architectural asymmetry. Message-based communication
should not interfere with the sensor data processing on the weak,
peripheral processors. For example, the computation in (2) should
complete in time, because the peripheral processor is stalling its
frequent processing task (5) and waiting. Similarly, message han-
dling (6) on the peripheral processor should not be executed so
often in order to avoid delaying the frequent data processing. Fi-
nally, for energy efficiency, the developer must arrange the com-
munication so that no message should wake up the central proces-
sor from a sleep state.

2.3.2 Problems with Software DSM
The archrival to message passing in programming distributed
systems without hardware-coherent memory is software DSM.
With a software protocol that coordinates multiple distributed
memory components to collaboratively serve memory access,
software DSM creates the key illusion of a shared address space.
Compared to messages, shared memory is a much more familiar
abstraction to smartphone developers. The resulting application
code is concise and similar to legacy smartphone code, as shown
in Figure 3. However, DSM may introduce communication over-
head due to thrashing or unnecessary data transfer.

Reflex resorts to DSM in order to conceal the underpinning
messages, with the following key rationales. First, compiler and
runtime can automate the architecture-dependent mechanics of
message passing. Second, overhead of DSM diminishes as access
contention decreases [14]. Fortunately, sensing applications tend
to have light access contention, since only the data processing task
is frequently accessing shared objects. Finally, with compiler
techniques, the overhead can be reduced close to what can be
achieved by hand-optimized message passing.

 (a) The code for the ARM Cotex-A9 central processor (b) The code for the ARM Cortex-M3 peripheral processor

Figure 3. Example code based on shared memory. A lock is used to prevent data race.

lock m; sample_t *samples; /* global variables */
...
samples = malloc(N*sizeof(sample_t));
...
void CheckData(){

acquire(m);
/* process samples and then clear them */
release(m);

}

void OnProcessData(){
acquire(m);
/* process the sensor readings, update samples */
release(m);

}

 (a) The code for the ARM Cortex-A9 central processor (b) The code for the ARM Cortex-M3 peripheral processor

Figure 2. Example code based on message passing. The code is written for TI OMAP4 based on the Syslink inter-processor message
passing API. To make the list concise, we hide low-level code such as message queue management.

sample_t *samples = malloc(N*sizeof(sample_t));
...
void CheckData(){

msg = MessageQ_alloc(HEAPID, MSG_SIZE);
/* assemble a GET_OBJECT message */
MessageQ_put(PERIPHERAL_MESSAGE_Q_ID, msg);
MessageQ_get(my_messageQ,reply_msg,WAIT_FOREVER));

/* unmarshall samples from message */

/* process samples and then clear them */
/* MUST NOT block */

/* write back */
msg = MessageQ_alloc(HEAPID, MSG_SIZE);
/* assemble a WRITE_BACK_OBJECT message */
MessageQ_put(PERIPHERAL_MESSAGE_Q_ID, msg);

}

1

2

sample_t *samples = malloc(N*sizeof(sample_t));
...
void OnProcessData(){

if (GET_STATE(samples) == INVALID) {
MessageQ_get(my_messageQ, msg, WAIT_FOREVER);
SET_STATE(samples) = VALID;
/* unmarshall samples from the msg */

}
/* process the sensor readings, update samples */

}
void OnMsg(Msg *msg) {

if (msg->object_id == OBJECT_ID(samples)) {
/* handle GET_OBJECT message for samples */
/* assemble a GET_OBJECT_REPLY message */
MessageQ_put(CENTRAL_MESSAGE_Q_ID, msg);
SET_STATE(samples, INVALID);

}
/* ... handle messages for other shared objects ... */

}

4

6

Explicit message passing

3

5

3. Overview of Reflex
Our goal in developing Reflex is to relieve developers from di-
rectly dealing with the heterogeneous, distributed platform so that
they can easily port legacy applications and develop new ones to
leverage the peripheral processors for energy efficiency.

3.1 Programming Constraints
In order to make the system design practical, we require applica-
tion developers to be aware of peripheral processors in the follow-
ing two ways. First, developers need to properly encapsulate the
code for a peripheral processor as a peripheral module. Accord-
ingly, we call the code designated for a central processor a central
module. To ease the development of peripheral modules, Reflex
provides a virtual base class called ModuleBase. Developers write
a peripheral module as a subclass of ModuleBase.

Second, Reflex restricts system services that a peripheral mod-
ule can use, since a peripheral processor does not have all the
resources available on a central processor, e.g., Internet connec-
tivity. Besides, sensor data processing, according to our observa-
tion, only requires limited system services: dynamic memory,
timer, and sensor data acquisition.

3.2 How Reflex Works
With an application properly developed as discussed above, the
Reflex compiler, the distributed runtime, and the library collec-
tively create an illusion that the application is running on a single
processor. The key to this illusion is to support data exchange
among modules running on different processors. Reflex recog-
nizes two forms of data exchange: procedure call and shared
memory. Reflex automatically translates a procedure call between
distributed modules into a synchronous remote procedure call
(RPC) and supports the shared memory with software DSM.
While the RPC realization is standard and straightforward, the
DSM poses significant technical challenges due to the extreme
architectural asymmetry.

When the application is launched, Reflex treats the central
module as a normal smartphone application and executes it on the
central processor. Then, the runtime ships the peripheral module
binaries to the proper peripheral processors for execution. When
the central module terminates, the Reflex runtime will terminate
all running peripheral modules of the application.

3.3 Hardware Requirements
We design Reflex to have minimalist hardware requirements for
peripheral processors and their integration with the central proces-

sor: at least 8KB of ROM, several KB of RAM, the capability to
handle interrupts, and the capability to acquire sensor data without
involving the central processor. Reflex only requires a data link
capable of interrupt-driven and bi-directional data exchange be-
tween peripheral and central processors. The data link can be a
low-speed hardware bus, e.g., I2C; it can also be realized with a
physically shared memory and hardware support for inter-
processor interrupts, as in TI OMAP4.

Reflex does not require a hardware Memory Management Unit
(MMU), although many existing distributed systems leverage
MMU to create a shared address space or to trap local memory
operations. Despite some peripheral processors indeed have dedi-
cated MMUs, e.g., Cortex-M3 on OMAP4, it is very difficult to
implement MMU for even weaker peripheral processors that are
necessary for energy efficient sensing applications.

4. Distributed Runtime Design
Figure 4 shows the structure of Reflex, including the distributed
runtime and the library. This user-level implementation makes
Reflex compatible with existing smartphone operating systems
and platforms, although a more disruptive kernel-level implemen-
tation is possible.

As shown in Figure 4, the Reflex runtime has one component
on each processor: the central runtime on the central processor as
the coordinator and the peripheral runtimes running on the pe-
ripheral processors. Locally, a component runtime provides the
corresponding module with a unified abstraction of resources. We
next describe in detail two important services provided by the
distributed runtime.

4.1 Module Execution Model
Unlike many other heterogeneous systems that execute offloaded
code synchronously, Reflex executes modules in parallel. To ac-
commodate the DSM and the RPC, the Reflex runtime is en-
hanced to execute modules with an event-driven model, which is
implemented with native execution units (e.g., thread or process).

A Reflex event is a formatted data unit sent to a module from
either other modules or the local component runtime. These data
units can be inter-processor messages (i.e., the primitive used to
implement the DSM and the RPC) or can be used in providing
local system services. A module has a private event queue to
which the local component runtime asynchronously delivers
events.

A module must poll its event queue to retrieve an event. Poll-
ing is non-blocking and lightweight: when the event queue is
empty, it only involves checking a flag variable. Such a polling-
based model provides the module with the control over exactly
when to handle asynchronous events. Polling occurs 1) when the
module finishes executing an event handler, its control flow re-
turning into the event loop and 2) according to the instrumentation
by the Reflex compiler. In particular, when a module is waiting to
receive some DSM or RPC message and stalls the execution of its
application code, it also polls its event queue to process DSM and
RPC messages that are received but not yet handled. Compared
with preemptive event handling, the polling-based model prevents
data processing on a weak processor from being overwhelmed by
coherence requests sent by stronger processors.

With the event-driven execution model, the code of a module
consists of three parts: the event loop as the skeleton of the mod-
ule, which keeps retrieving and dispatching various events; the
application-specific handling of events, as provided by the devel-
oper; and functions that support the DSM and the RPC as well as
wrapping the system services.

Figure 4. The structure of Reflex. This example heterogeneous,
asymmetric hardware platform is a TI OMAP4-based smartphone
with an added MSP430 processor.

Central
Runtime

ARM A9
Linux

Module Library

Central
Module

DSM RPC

Heterogeneous,
Asymmetric
Platform

ARM M3
SYS/BIOS

Distributed
Runtime

Peripheral
Runtime

Peripheral
Module

DSM RPC

MSP430
uC/OSII

Message
Transport

HW messages

Application

Shared Memory

Incoherent
shared memory

Peripheral
Runtime

Peripheral
Module

DSM RPC

Platform
Abstraction
Layer

Re
fle

x

4.2 Message Transport
Globally, all runtime components collectively implement a light-
weight message transport as shown in Figure 4. The message
transport serves as the only interface for communication among
all runtime components as well as the lowest-level primitive of
communication among all distributed application modules, a de-
sign also adopted by many other heterogeneous systems, e.g.,
Helios [25] and Barrelfish [3]. A message will be delivered as an
event to the destination module.

The message transport is best-effort and does not guarantee re-
liable delivery. This is because higher-level protocols on top of
the message transport, such as the DSM and the RPC, all use mes-
sages in request/response pairs between the two communicating
modules. Thus, the response message implicitly indicates the de-
livery of the earlier request message. Furthermore, the higher-
level protocols employ message sequence numbers to identify and
therefore discard duplicate messages due to timeout and retrans-
mission.

5. Software DSM Design
We now present the design of the Reflex software DSM. The key
design objectives are to leverage the architectural asymmetry for
energy efficiency while minimizing performance overhead.

5.1 General Design Choices
Overall, the Reflex DSM realizes release consistency and main-
tains memory coherence at object-level, as will be discussed be-
low.

Memory Consistency Model: To developers, the memory con-
sistency model defines the expected outcome of memory accesses.
The Reflex DSM implements release consistency [35]. Release
consistency introduces two synchronization operations (acquire
and release) and guarantees that a correctly synchronized appli-
cation will exhibit sequential memory consistency, just as if the
application were running on a single processor. By correctly, we
mean using synchronization operations (acquire and then re-
lease) to construct critical sections to prevent concurrent accesses
to the same object, if at least one of these accesses is write.

We choose release consistency for two reasons. First, it is easy
for smartphone developers to use. We notice that writing synchro-
nized applications is already a common task in contemporary
smartphone development, e.g., Android application development
in Java greatly encourages synchronized applications [22]. Sec-
ond, release consistency is lightweight to implement: it can
greatly reduce communication overhead by allowing most com-
munication to happen at synchronization points, a significant
benefit to our targeted architecture where the inter-processor
communication latency is relatively high.

Coherence Granularity: A DSM design must determine the
basic memory unit for which coherence is maintained, i.e., the
coherence granularity. A larger unit may better leverage spatial
locality to amortize communication overhead, but also increases
unnecessary data transfer due to false sharing.

Many DSM solutions support block-level granularity, using a
fixed-size memory block (or a fixed-size page defined by the
MMU) as the basic memory unit for coherence. In contrast, the
Reflex DSM uses software objects as the basic memory unit for
two reasons. First, Reflex does not assume an MMU. Second, a
pre-defined block size leads to a fixed tradeoff between the com-
munication overhead and the false sharing of the resulting DSM.
In contrast, object-level granularity allows the Reflex DSM to
employ compiler-supplied program information to better leverage
locality.

The Reflex DSM supports sharing two types of objects: global
objects and heap objects. In facing the extremely limited local
memory on peripheral processors, a module only caches heap
objects it accesses, rather than all heap objects in the application.

The Reflex DSM associates each shared object with an appli-
cation-wide integer ID that is valid across all modules. The IDs
are allocated in ascending order as objects are created, either stati-
cally by the compiler (for global objects) or dynamically by the
DSM (for heap objects). Each module has its own range to allo-
cate new IDs so it can do so independently. The DSM maintains a
table of shared objects in every module; each entry in the table
records the metadata of one shared object, including the object ID,
type, its local address range, and information about other modules
that also share this object.

We next present the coherence protocol based on the design
choices made above. The protocol specifies how modules sharing
an object should behave in accessing the object.

5.2 Protocol Invariant
At the core of our coherence protocol is the following invariant:

Any coherence communication between two processors must

be initiated by the stronger one.

This invariant guarantees the energy efficiency of the Reflex

DSM: in accessing shared objects, a weak processor will never
wake up stronger processors with coherence communication. Such
a unique invariant clearly distinguishes our coherence protocol
from existing ones, as will be described in detail below.

5.3 Asymmetric Module Roles
Given a shared memory object in an application, we define its
sharing group as all modules in the application that access it.
Each module in a sharing group has a local copy of the shared
object. All write/read operations by a module on a shared object
are actually performed on the local copy of the object.

In a sharing group, all modules have asymmetric roles based
on the relative processing power of the processors that these mod-
ules are executed with. To facilitate the discussion, we mention a
module as strong or weak to refer to the relative processing power
of its associated processor. The weakest module in the group is
the home of the object, while the other modules are requesters of
the object. Since a module may access multiple shared objects, it
can participate in multiple sharing groups and play different roles
in them.

While the home of a global object is assigned by the compiler
statically, the home of a heap object is determined by the DSM
on-the-fly and automatically. Initially, a heap object O allocated
by a module M has M as its home; later, if a pointer to O is passed
to another module N that is weaker than M, N notifies M that itself
will be the new home of O and retrieves the metadata of O from
M. After that, M redirects any subsequent requester of O to the
new home N, a one-time effort for each requester.

The role asymmetry employed by the Reflex DSM is different
from existing heterogeneous DSM solutions in an important way.
With performance as the primary goal, most existing heterogene-
ous DSM solutions employ the most resource-rich (and power-
hungry) processor to serve requesters [9, 41]. In contrast, the Re-
flex DSM greatly favors energy efficiency and, therefore, uses the
weakest processor to host the home role. Only if the weakest
processor handles memory requests will the protocol invariant
(Section 5.2) hold. Therefore, other stronger processors are able to
remain in sleep mode as much as possible.

5.4 Finite-state Machine Specification
We now provide details regarding the behaviors of the home and
requesters in terms of finite-state machines. A module has a state
with regard to any sharing group it participates in; if participating
in multiple sharing groups, it will have multiple independent
states with regard to each of those groups. A module state can be
one of the following two:

• The home can be either Owned or Invalid.
• A requester can be Owned, Invalid, or Shared.

The states have the same semantics as in most coherence pro-
tocols. In a sharing group, conceptually one and only one module
is in the Owned state. A module in the Owned state can read and
write to its local copy; a module in the Invalid state can neither
read nor write to its local copy; a requester module in the Shared
state can read but not write to its local copy. A module in the
Owned or Shared state has the most updated value of the shared
object in its local copy.

Modules in a sharing group change states only by requests sent
by a requester. The home module never initiates a change itself. A
requester module uses four requests: write_miss, write_back,
read_miss, and revalidate.

Figure 5 (a) and (b) illustrate the interactions between a re-
quester and the home. In the two cases, the requester needs to read
and write to the object, respectively. Before reading the object
(Figure 5 (a)), the requester in the Invalid state sends a
read_miss request to the home. The home responds by sending
back the most updated value of the shared object. The read_miss
request will change the state of the requester to Shared. Later,
when the requester sends a revalidate request to the home, the
home responds to indicate that the object has not been modified
since the last read_miss request. Therefore, the requester module
remains in the Shared state. If the home responds that the object
has been modified (not shown in the figure), the requester will
transit to the Invalid state, and it will need to send a read_miss
again prior to any further read of the object. Note that revalidate
is only necessary during synchronization, as we will explain in
detail in Section 5.6.

Before writing to the object (Figure 5 (b)), the requester in the
Shared or Invalid state sends a write_miss request to the home
in order to transit into the Owned state; it sends a write_back re-
quest (along with the latest value from the local copy) to the home
in order to transit back into the Shared state. Accordingly, the
home will transit to Invalid and Owned after responding to
write_miss and write_back requests, respectively.

The protocol described above introduces two types of latency
in applications, namely home latency and requester latency. Home
latency is introduced when a home in the Invalid state stalls its
execution and passively waits until it is in the Owned state. Re-

quester latency is introduced when a requester stalls its execution
to wait for responses to read_miss or write_miss from the home.
We will experimentally evaluate the impact of the above latency
to applications in Section 8.

5.5 Support for Synchronization
Release consistency defines two synchronization operations for
applications: acquire and release. The Reflex DSM provides
lock objects to support both operations, implementing a lock as a
shared object using the coherence protocol. For example, to ac-
quire or release a lock, a requester sends the home of the lock
object a write_miss or write_back request of the lock, respec-
tively. To ensure release consistency, Reflex currently requires a
lock to have the same home as its protected objects have. We plan
to remove the restriction in future work.

According to release consistency, if a module performs re-
lease and another module subsequently performs acquire, the
first module must make its updates visible to the second one. In
propagating updates during synchronization, homes are lazy and
requesters are eager. When the home releases a lock, it performs
no coherence communication; it will send an updated value to a
requester only when the requester asks for it. In contrast, when a
requester releases a lock, it writes back all its updated objects
that have the same home as the lock has.

Such asymmetric module behaviors are critical to the design
goals of the Reflex DSM. The home’s laziness guarantees high
energy efficiency, as it maintains the protocol invariant stated in
Section 5.2. At the same time, the requester’s eagerness keeps the
home’s stalling period small in order to minimize the resulting
disruption to frequent processing.

5.6 Notable Design Aspects
We next highlight three notable design aspects that are essential to
the objectives of the Reflex DSM. First, a home resolves its ac-
cess of an unavailable object by passive waiting. This is to main-
tain the protocol invariant: running on the weakest processor, the
home cannot initiate communication to other modules.

Second, to keep an object updated, a requester in the Shared
state actively revalidates the object with the home. This is unlike
most other DSMs where a read-only object is passively invali-
dated or updated by other hosts. The reason is that the home can-
not send out messages to invalidate or update requester’s copies.
Instead, the home tracks whether a Shared requester’s copy is
still up-to-date, by observing whether the object has been written
since the requester’s last read_miss or write_back request. Ac-
cordingly, the home responds to revalidate requests, as described
in Section 5.4.

One may think that the requester-initiated revalidation incurs
excessive communication, but actually it does not. In a nutshell,
on acquire of a lock, a requester will revalidate all its objects that

(a) read_miss and then revalidate from a requester (b) write_miss and then write_back from a requester

Figure 5. State transitions in the Reflex DSM coherence protocol. All transitions are triggered by requests from a requester.

Owned
Shared

Invalid
read_miss

Response

revalidate

Requester Home

read

Response
(requester’s copy up-to-date)

Owned

Owned

Shared

Invalid
or Shared

Owned

Invalid

write_miss

Response

write_back

Response

Requester Home

write

have the same home as the lock has, rather than sending a revali-
dation request before each read access. This is because release
consistency guarantees that a module sees updated values only
after each acquire operation. In addition, the Reflex DSM piggy-
backs the communication of revalidation to that of acquire, add-
ing no more than one byte per message.

Third, the Reflex DSM aggressively reduces home latency at
the cost of increased requester latency. This is achieved by keep-
ing the home in the Owned state as much as possible, with the
following designs. 1) In propagating updates during synchroniza-
tion, requesters are eager and the home is lazy, as described in
Section 5.5. 2) The home handles coherence requests only when
its frequent processing is idle or stalled, supported by the execu-
tion model of modules as discussed in Section 4.1. This is because
of the extreme resource asymmetry: requesters, running on
stronger processors, can produce requests at a much higher rate
than the home, running on the weakest processor, can handle.
Furthermore, we choose to mitigate requester latency by compiler
optimization described in Section 6 below.

6. Compiler Support for DSM
Without assuming MMU support, the Reflex DSM cannot per-
form coherence operations within trap handlers, as many other
DSM systems do. Instead, the Reflex compiler statically auto-
mates invocations to coherence operations in developer’s code. In
addition, the compiler aggregates nearby coherence operations to
greatly reduce the DSM overhead.

6.1 Code Instrumentation
In order to realize the coherence protocol specified above, the
Reflex compiler analyzes the application code and inserts two
types of code: pre-access and post-access. By design, for each
access of a shared object the Reflex compiler inserts necessary
pre-access code immediately before the access. The pre-access
code determines the target object of the access and checks the
corresponding module state. It does nothing if the state is Owned
(before read or write access) or Shared (before read access). Oth-
erwise, it performs coherence operations that are specific to the
nature of the access (read or write) and the role of the module
(home or requester). In addition, after a write access in a requester
module the Reflex compiler inserts post-access code that sends
out a write_back request and sets the requester back to Shared.

6.2 Optimization for Communication
The inserted code introduces overhead in both checking module
state and inter-module communication. The Reflex compiler re-
duces the former overhead by employing a batching technique
similar to that of Shasta [33]: if a module state has been checked
by an earlier pre-access and no related coherence communica-
tion has occurred since then, a later pre-access can be eliminated.
In the following discussion, we will focus on optimizations for
reducing the communication overhead.

Batch Prefetching: The Reflex DSM maintains coherence for
each shared object. However, fetching each object with an indi-
vidual message incurs high communication overhead. The Reflex
DSM leverages spatial locality to amortize the communication
overhead by speculatively fetching multiple objects in a batch.

Once pre-access code finds it is necessary to send a
read_miss or write_miss to fetch an object from the home, the
DSM also examines objects that have the same home and adjacent
IDs. Since object IDs are allocated in ascending order, having
adjacent IDs implies potential spatial locality in accessing such
objects: they are either global objects defined close to each other

in the source code or heap objects allocated consecutively during
execution. The DSM adds multiple objects to a batch, fetches
them, and receives responses with two single messages, respec-
tively. We will experimentally show the impact of batch parame-
ters in Section 8.

Deferred Write-back: Due to temporal locality, it is common
that a shared object is repeatedly accessed in a short period of
time, for example, in a loop. By only inserting one post-access
after all these accesses, the Reflex compiler essentially merges
multiple write_back requests of the same object, greatly reducing
the number of messages.

A requester should defer write_back only moderately, in order
to keep home latency low. Given that requesters are executed
much faster than the home, the DSM leverages release consis-
tency to defer all write_backs until the next release. The com-
piler does so by inserting post-access right before each release
to send out all deferred write_backs.

To summarize, by design, before each access of shared objects
the compiler will insert pre-access; however, after optimization
only a small, necessary portion of such code is actually emitted. If
pre-access in requesters finds out that the current module state
disallows the memory access, it immediately sends a message of
read_miss or write_miss (with batch-prefetching). In addition, the
compiler inserts post-access before each call site of release.
Such code in requesters immediately sends a message of all de-
ferred write_backs.

7. Prototype Realization
We have implemented the complete Reflex design in a modular
way for portability. In particular, the DSM and the RPC are fully
implemented in the module library that is linked into the module
code, as shown in Figure 4. The DSM internally uses the message
transport supplied by the Reflex runtime. The Reflex compiler
instruments the developer’s code by inserting invocations of co-
herence operations defined in the module library. Our Reflex im-
plementation, with minor platform-specific revisions, runs on two
platforms, TI OMAP4 and a custom tri-processor platform.

7.1 Reflex Runtime and Library
We realize the Reflex runtime and library with the software struc-
ture shown in Figure 4. On the bottom of the runtime is a Platform
Abstraction Layer, which wraps all platform-specific functions,
such as kernel API and hardware message passing. On top of the
Platform Abstraction Layer, we build all major runtime functions
and the module library that implements the DSM and the RPC.

The execution model of a module is implemented with the
module library, which is dynamically linked with the developer’s
code during module execution. The module library is imple-
mented with around 1500 lines of commented C/C++ code, con-
sisting of routines that are for the event loop, for the DSM and the
RPC, and for wrapping the system services. The Reflex runtime is
implemented in around 4000 lines of commented C/C++ code.

7.2 Reflex Compiler Toolkit
We build the Reflex compiler as a transformation pass on top of
the LLVM compiler infrastructure [13]. LLVM compiles the
source code into LLVM-IR and the Reflex compiler instruments
the IR for DSM. Before the module is deployed as part of the
application, the module IR is transformed into to a native binary
depending on the target processor.

The object-level coherence of the Reflex DSM requires object
types to be determined at compile time. To meet such a need,
currently Reflex supports application development with a strong-

typed subset of C++, by applying rules such as using typed mal-
loc, disallowing pointer arithmetic, and disallowing type-casting,
a strategy used in many embedded systems [7]. After compiling
the application source code into LLVM IR, the Reflex compiler
certifies that the IR is strong-typed; it then outputs descriptions of
all types in Interface Description Language (IDL).

Reflex includes a small stub compiler that produces code for
(un)marshaling objects across different ISAs. Implemented with
around 700 lines of Python code, the stub compiler takes the com-
piler-generated type descriptions and produces (un)marshaling
code used by the DSM and the RPC. The major task of the
(un)marshaling code is to convert the formats of typed objects.
Most data conversion is straightforward except for pointers. Since
processors have separate address spaces, one pointer in a module
needs to be converted to be used by another module. To do so, the
(un)marshaling code uses a portable pointer as the intermediate
format among local pointers in separate address spaces.

A portable pointer has 32 bits (the same as the longest local
pointer in the system), encoded with the following information:
object ID (13 bits), the byte offset within the object (10 bits), type
id (6 bits, as used in the compiler-generated IDL), and the home id
(3 bits). Before sending out a local pointer in a message, the mar-
shaling code replaces the local pointer with a portable pointer in
place. On receiving a portable pointer in a message, the unmar-
shaling code retrieves the corresponding local pointer based on
the encoded object ID and offset. If the unmarshaling code finds
the object ID is new to this module (e.g., a heap object newly
created by another module), the code allocates an object on the
local heap with the type specified in the portable pointer, and adds
a corresponding entry in the local object table.

7.3 Hardware Platforms
The Reflex runtime and module library are highly portable, thanks
to the layered structure. After changing the marshalling imple-
mentation, the message passing implementation, and hundreds of
source lines in the Platform Abstraction Layer, we have ported
Reflex to two platforms: TI OMAP4 and a custom, tri-processor
hardware platform.

7.3.1 TI OMAP4
We have realized Reflex on TI OMAP4. We built the Platform
Abstraction Layer to wrap the Syslink inter-processor message
passing API, the Linux kernel, and the SYS/BIOS kernel. In par-
ticular, the message passing abstraction offered by Syslink en-
ables us to implement the Reflex DSM on OMAP4, despite the
fact that message passing is actually using a non-coherent shared
memory. Due to page limit, in the rest of the paper we will focus
on the implementation and evaluation using the tri-processor
hardware platform, which is introduced for the first time by this
paper.

7.3.2 Tri-processor hardware platform
We developed the tri-processor hardware platform by extending a
Nokia N900 smartphone. As shown in Figure 6, the platform em-
ploys the N900’s powerful OMAP3630 CPU (OMAP3) as the
central processor and employs two ultra-low-power microcontrol-
lers, LPC1343 (LPC) and MSP430F1611 (MSP), as the peripheral
processors. Table 1 summarizes the characteristics of these three
processors. The platform uses Maemo Linux shipped with the
N900 as the central kernel and runs two separated µC/OS-II [12]
on two peripheral processors. Built on top of the Platform Ab-
straction Layer, the peripheral runtime is a set of procedures

linked with the vanilla µC/OS-II kernel. Peripheral modules are
executed as µC/OS-II tasks.

I2C-based interconnect: The three processors are integrated via
an I2C bus at 100KHz and physically share no memory. In order
to physically access the I2C interface and the interrupt line of the
OMAP3, we remove the N900’s camera module and hijack its
connector with the OMAP3. In moving data on the I2C bus, a byte
chunk with a size of typical Reflex messages usually takes tens of
milliseconds (6ms for a 48 byte chunk and 18ms for a 176 byte
chunk). Built on top of the I2C bus, the message transport of the
Reflex runtime itself incurs little computing overhead, which
takes 1500 cycles (MSP), 891 cycles (LPC), and 1800 cycles
(OMAP3) in sending a message, and 1560 cycles (MSP), 1612
cycles (LPC), and 1800 cycles (OMAP3) in receiving a message,
excluding actual byte sending/receiving. Compared to the tens of
milliseconds of interconnect baseline latency, the computing
overhead is negligible.

Sensors: The N900, like all commercial mobile devices, tightly
integrates its built-in sensors with the central processor (the
OMAP3). Therefore, it is very difficult for a peripheral processor
to access the built-in sensors without waking up the central proc-
essor, violating the hardware requirements of Reflex as outlined in
Section 3.3. As illustrated by Figure 6, we add a KXM52 tri-axis
accelerometer to MSP through ADC; we add an analog micro-
phone and an MN5010HS GPS receiver to LPC through ADC and
UART, respectively.

8. Evaluation
We evaluate Reflex and its DSM with the tri-processor platform
reported in Section 7 and four real-world smartphone sensing
applications.

Table 1. The processors used in the tri-processor prototype. At
run time, unused processors are turned off to reduce the system
idle power.

 OMAP3 LPC MSP
Clock Rate 600MHz 72MHz 3MHz
Local Memory 256MB 8KB 10KB
Local Storage 32GB 32KB 55KB
Active Power ~200mW 42.9mW 7.5mW
Idle Power 13.4mW 7mW 3.2mW

Figure 6. The tri-processor platform (Top) and its architecture
diagram (Bottom)

Nokia N900 (OMAP3)

MSPLPC
I2C Bus &
Interrupt

Interrupt

I2C Bus

Accelerometer Microphone

MSP
OMAP3

GPS

LPC

8.1 Benchmark Applications
Since there is no standard sensing application benchmark, we
employ the following four benchmarks, a combination of classic
and recently reported smartphone sensing applications. Table 2
provides the typical usage of them used in the reported evaluation.

Pedometer (Pedo) uses the accelerometer to count the user
steps. Pedometer (Reflex) consists of a peripheral module that
counts steps and a central module that provides a user interface
(UI) to query the step information. The two modules share a few
flags and variables that store step count, stride, velocity, distance,
and history. The peripheral module can be executed by MSP.

uWave recognizes user gesture with the accelerometer [18].
uWave (Reflex) consists of two modules: a peripheral module
periodically performs acceleration pattern matching and calls the
central module when a gesture is recognized; a central module
provides a UI. The two modules share two acceleration templates
and a window of recent accelerations, each of which is a 64-
element integer array. They also share variables for gesture type,
adaptive threshold, and similarity. The peripheral module can be
executed by MSP.

Rate-Adaptive Position Sensing (RAPS) [28] calculates geo-
location uncertainty by comparing current acceleration with con-
text-specific historical averages of velocity and acceleration.
When the uncertainty passes a threshold, RAPS takes a GPS read-
ing and updates the historical measures. RAPS (Reflex) consists of
two peripheral modules PA and PB, and the central module. PA
monitors acceleration and calculates location uncertainty. When
the uncertainty exceeds a threshold, PA calls PB. PB then gathers
GPS data, updates the recorded geo-locations, and provides PA
with the historical averages. The central module provides a UI to
query the recorded geo-locations. PA and PB share information
about uncertainty and the historical accelerations. PB and the
central module share recent geo-locations with timestamps. PA
and PB are executed by the MSP and LPC, respectively.

SoundSense [19] detects sound and analyzes it to determine the
mobile user context. SoundSense (Reflex) uses a peripheral mod-
ule to run the frame admission and feature extraction algorithm
and a central module to execute simplified context classification.
The admission parameters, the window features, and their vari-
ances are shared between the two modules. The peripheral module
can be executed by the LPC.

We implement each benchmark in three ways: The N900’s
programming framework (Legacy), on the tri-processor platform
with message passing (Message), and with the Reflex DSM (Re-
flex DSM). A simple UI is implemented for central modules using
the Qt framework for N900. Legacy implementations use the
N900’s built-in sensors while the other two use sensors connected

to the peripheral processors. Like most smartphone sensing appli-
cations, these benchmark applications spend most time in com-
mon scenarios of simple sensor data processing, which determine
the overall energy characteristics of the applications.

8.2 Overall Performance of Reflex
We first examine how well Reflex as a whole achieves its goal in
saving energy, by measuring the power of the entire system. To
do so, we sample current and voltage using USB-2533 (from
Measurement Computing) at a measurement rate of 100 HZ. For
Legacy implementations, we measure the power of the N900 from
its phone-battery hardware interface directly: we physically tap
into the interface and simultaneously sample the current (using a
0.1ohm current sense resistor) and the voltage. For the Reflex-
based implementations on the tri-processor platform, we addition-
ally include the power of all added hardware. In both cases, we
power off unused hardware such as the baseband.

Sensing applications in benchmarks perform periodic process-
ing. We benchmark an application scenario by running it for a
given period of time (typically 10 min) with Legacy and Reflex,
respectively. During the benchmark period, Legacy and Reflex
finish the same amount of sensor data processing. Therefore, the
average power over the benchmark period reflects the system
energy efficiency.

As expected from the addition of low-power cores, our meas-
urement shows that Reflex reduces the system power consumption
by up to 83% for the most common scenarios of each benchmark.
Only in scenarios when the central processor is involved do the
Reflex-based implementations incur slight power overhead (~3%)
from the added peripheral processors. Because such scenarios are
relatively rare in real life usage, the Reflex-based implementations
will be significantly more efficient than the Legacy implementa-
tions. With the per scenario actual power measurement, we emu-
late the scenario transitions (based on the application usage in
Table 2) to compute the application average power. As shown in
Figure 7, compared to Legacy implementations, Reflex reduces

Figure 7. The average system power consumption of benchmark
applications

0

80

160

240
Po

w
er

 (m
W

)
Legacy
Reflex
Reflex w/ Strongest Module as Home
Reflex w/ Last Writer as Home

uWave RAPS SoundSensePedo

Table 2. Benchmark applications used in the evaluation

Apps Assumptions of Typical Usage

Pedo Step detected every 400ms, UI query every 30 sec
uWave UI activated every 15 min
RAPS 350 new geo-locations per day, GPS on 27% of time [28]
Sound
-Sense Frame sampled every 640ms, 20 events per hour [19]

Figure 8. The source lines of code of benchmark applications.
Comment or blank lines are excluded. For a column that consists
of two parts, the bottom part shows the source lines of the central
module; the top part shows that of the peripheral module(s).

0

100

200

300

400

500

600

700
Legacy
Reflex DSM
Message

So
ur

ce
Li

ne
s o

f C
od

e

uWave RAPS SoundSensePedo

the average system power consumption by to up to 81% (65% on
average).

8.3 Source Code Examination
We investigate how Reflex facilitates application development by
examining the source code of the benchmarks. First, how is Re-
flex different from the legacy development style? As shown in
Figure 8, the Reflex-based and the Legacy implementations of the
same benchmark have very similar numbers of source lines of
code; more importantly, they share most of the source code with
95% identical source lines. Their source code only differs in the
way of gluing the programming framework and invoking the sys-
tem services described in Section 3. This observation validates
that Reflex has achieved its goal of maintaining the contemporary
programming style and facilitating porting legacy sensing applica-
tions to the heterogeneous, distributed architecture.

Second, how does the DSM ease the application development
compared to message passing? To make the source code compari-
son fair, we hand-optimized the message-based code with best
efforts, including implementing the commonly-used message
manipulations as subroutines and managing objects with a table
and iterating over the table to operate the objects. The DSM
greatly eases the application development by enabling data ex-
change in benchmarks to be concisely coded as in the source code
of Figure 3. Compared to the message-passing implementations,
the DSM reduces the lines of code by 30% on average as shown
in Figure 8. In particular, the synchronization operations required
by DSM impose a small development burden: they take at most
10 lines per application.

8.4 DSM Performance
We next zoom into the behavior of the Reflex DSM and examine
the effectiveness of its important design choices.

8.4.1 Asymmetric Module Role Assignment
The Reflex DSM exploits the weakest processor to host the home
module of a shared object and, therefore, keeps more powerful
processors in sleep, a strategy that is critical to the energy effi-
ciency goal. We compare this strategy with the following two
alternatives that are widely used in other DSM designs: 1) using
the strongest processor for the home module and 2) using the
module that last wrote to the object as the home module. Based on
the per scenario actual power measurement, we show the emu-
lated overall power consumption under both alternative strategies
in Figure 7 (‘Strongest Module as Home’ and ‘Last Writer as
Home’). With the alternative strategies, the system power con-
sumption is up to five times as much as that of the Reflex DSM,
because the strongest processor is woken up to serve coherence
requests and therefore unable to remain in sleep mode for a long
time.

8.4.2 Storage and Memory Overhead
For a peripheral processor, Reflex introduces a small overhead in
storage and memory, i.e., ~8KB ROM and ~0.2KB RAM, due to
the runtime and the module library. Of all ROM and RAM
equipped by one peripheral processor, the storage (ROM) over-
head is less than 25% and the memory (RAM) overhead is less
than 2.5%. The Reflex DSM further introduces little stor-
age/memory overhead due to the compiler-inserted code and the
object table. All pre-access or post-access code only increases
the ROM usage of a peripheral module by at most 200 bytes. In
each central module, the inserted code ranges from 200 to 700
bytes, less than 1.2% of the module storage usage. Each entry in

the object table requires 6–8 bytes of extra RAM per module. The
increased RAM is up to 119 bytes per module in our benchmarks.

8.4.3 DSM Execution Overhead
The DSM execution overhead comes from three major sources:
module state checking as done by pre-access, requester latency,
and home latency. In the common application scenarios where no
inter-module data exchange occurs, the DSM execution overhead
only comes from pre-access. With three ISAs in the tri-
processor platform, each pre-access consists of one bit-shift
operation, two to three load instructions and one compare instruc-
tion, resulting in only 5–10 extra processor cycles. Furthermore,
the Reflex compiler aggressively eliminates pre-access for most
accesses, using Mod/Ref analysis and object type information. We
estimate that the state checking incurs negligible overhead (less
than 3%) in the execution time of all benchmarks.

The DSM introduces home latency and requester latency. The
measured home latency is 20ms on average, dominated by the
message passing delay. Requester latency is effectively amortized
over multiple objects by batch prefetching. To demonstrate its
benefit, we compare the average requester latency per object
without and with the batch prefetching. In the experiment, we
vary batch parameters that specify the maximum size and the
maximum count of objects that can be fetched with a single mes-
sage. For example, batch parameters (4 objects, 128 bytes) specify
that the DSM will flush a request message to the transport if ob-
jects requested by the message are more than 4 or their total size
exceeds 128 bytes. As shown in Figure 9, the batch prefetching
can reduce the average requester latency by up to 75% compared
to the case without batch prefetching. In addition, we experimen-
tally verify that without deferring write_backs, the DSM will slow
down the execution of benchmark applications by up to 1000
times due to excessive messages, which is prohibitively expensive.

9. Related work
Reflex is the first work that seeks to enable developers to leverage
low-power cores in mobile systems easily. The problem of pro-
gramming heterogeneous, distributed systems is, however, not
new. We next discuss the major approaches used to support het-
erogeneous system programming and in particular data exchange.
It is important to keep in mind that Reflex faces a set of unique
challenges when dealing with smartphones: mature programming
languages, energy efficiency and extreme architectural asymme-
try.

Programming with Message Passing: Most heterogeneous
systems support inter-processor communication with message-like
hardware primitives. Some directly expose message passing to
application development. For example, Hydra [43] supports appli-

Figure 9. The average requester latency in fetching an object,
without and with batch prefetching

0

5

10

15

20

25

30

35

40

Re
qu

es
te

r L
at

en
cy

 (m
s)

No Batch Prefetching (4 objects, 128 bytes)
(8 objects, 256 bytes) (8 objects, 512 bytes)

uWave RAPS SoundSensePedo

cation code distributed on multiple devices communicating with
channels. Lime [11] supports code distributed on CPU and FPGA
exchanging data through a buffer, a message-passing abstraction.
Dandelion [15] supports applications that are distributed across a
smartphone and wireless body-area sensors using RPC for mes-
sage passing. As we analyzed in Section 2.3, programming with
message passing can be tedious and error-prone for smartphone
sensing applications.

Programming with DSM: Generally, the idea of creating a
shared memory illusion by software with messages, or software
DSM, is well-known. There is a rich body of software DSM de-
signs for conventional loosely-coupled distributed systems like
workstation clusters. Aiming at minimizing the performance
overhead of shared memory, these DSM designs have employed
OS kernel support [8], compiler techniques [33] and runtime sys-
tems [6, 14]. Also, heterogeneity has been addressed [44]. Most of
them rely on hardware MMU support. While they inspire the de-
sign of the Reflex DSM, none of them is designed for energy
efficiency or extreme architectural asymmetry. More recently,
Hera-JVM [23] realizes a software cache among heterogeneous
cores of the Cell processor. Unlike the Reflex DSM, it implements
the cache coherence in a symmetric fashion and with a coarse
granularity, by simply flushing the entire cache of a peripheral
processor (i.e., SPE) to the main memory during synchronization.
This makes Hera-JVM energy-inefficient and improper for smart-
phone sensing. Partitioned Global Address Space (PGAS) allows
multiple processors (many homogeneous ones [2] or a few het-
erogeneous ones [31]) that share no coherent memory to logically
share a window of shared addresses. Unlike Reflex, such a shared
window is implemented with symmetric coherence protocols.
ADSM [9] provides a software DSM between CPU and GPU by
fully implementing the DSM on the CPU, a strategy opposite to
the Reflex DSM. Although the strategy is asymmetric, it targets
performance instead of energy efficiency and therefore will not
work for smartphone sensing applications.

Custom Programming Model: Many programming models
have been proposed for heterogeneous systems. Most of them
define custom programming interface to bridge the developer’s
code with the underlying architecture. Qilin [20] provides an API
for parallelizable computation so that the computation can be
dynamically mapped to heterogeneous resources. Merge [17]
defines new language constructs to support the map-reduce pat-
tern. Cell-Ss [4] requires annotations of source code to exploit
task-level parallelism. These custom programming models are
successful in their targeted applications, mostly scientific or ana-
lytic workloads. In contrast, Reflex aims at supporting the mature
style of smartphone application development, by providing an
object-oriented class and requiring developers to encapsulate the
code intended to be executed on peripheral processors.

Hardware-Coherent Memory: While most symmetric multi-
processing (SMP) systems support hardware-coherent memory as
exemplified by commercial multicore processors, only a few het-
erogeneous systems [40, 41] rely on it. As we analyzed in Section
2, hardware-coherent memory is difficult, if possible at all, for the
low-power peripheral processors that Reflex is concerned with.

10. Discussion
Type-safe Languages: The Reflex DSM leverages type informa-
tion to aggressively reduce runtime overhead with static optimiza-
tion. In the current prototype, we ensure that the type information
is statically available by subsetting C++. A more ambitious im-
plementation should directly support modern type-safe languages
that are widely used in smartphone development, e.g., Java and
C#. We notice that several existing systems already enabled type-

safe languages for resource-constrained processors, e.g., Darjee-
ling [5], the .NET micro framework, and Hera-JVM [23]. We are
working towards supporting type-safe languages under extreme
resource scarcity.

Reflex beyond smartphone sensing: While Reflex and its
DSM design are motivated by smartphones, their technical inno-
vations have a broader impact. Many consumer electronic devices
are embracing sensors, from ebook readers to game consoles to
tablets. Reflex and its DSM design will allow developers to write
efficient applications for such systems with ease. The core ideas
of the Reflex DSM can be further extended to high-performance
systems with loosely integrated, heterogeneous resources where
energy efficiency has become an increasing practical concern.

11. Conclusion
Sensing applications are considered among the emerging killer
applications for smartphones. Reflex is the first endeavor toward
making programming heterogeneous, asymmetric smartphones
easier. Sensing applications on heterogeneous smartphones pose
unique systems challenges that were previously not important. In
addressing these challenges, we have not only revised known
solutions but also devised novel ones in software DSM that ex-
ploit extreme architectural asymmetry for high energy efficiency.
We note that Reflex still imposes a few constraints in program-
ming due to the requirement of encapsulating a peripheral module
and the limit on the peripheral system services. However, our
experience suggests such relaxation is necessary: eliminating
these constraints would be too expensive to be practical, espe-
cially with such an asymmetric architecture.

Acknowledgments
This work was supported in part by NSF CAREER Award
#1054693. Robert LiKamWa was supported by a Texas Instru-
ments Graduate Fellowship. The authors are grateful for the useful
comments made by the anonymous reviewers and the paper shep-
herd, Dr. Jan-Willem Maessen.

References
[1] Y. Agarwal, S. Hodges, R. Chandra et al., “Somniloquy: augmenting

network interfaces to reduce PC energy usage,” in Proc. USENIX
Symp. Networked Systems Design & Implementation (NSDI), Boston,
Massachusetts, 2009, pp. 365-380.

[2] C. Barton, C. Casaval, G. Almasi et al., “Shared memory program-
ming for large scale machines,” in Proc. ACM SIGPLAN Conf. Pro-
gramming Language Design and Implementation (PLDI), Ottawa,
Ontario, Canada, 2006, pp. 108-117.

[3] A. Baumann, P. Barham, P. Dagand et al., “The Multikernel: A new
OS architecture for scalable multicore systems,” in Proc. ACM Symp.
Operating Systems Principles (SOSP), Big Sky, Montana, USA,
2009, pp. 29-44.

[4] P. Bellens, J. M. Perez, R. M. Badia et al., “CellSs: a Programming
Model for the Cell BE Architecture,” in Proc. ACM/IEEE Conf. Su-
percomputing (SC), Tampa, Florida, 2006, pp. 86.

[5] N. Brouwers, K. Langendoen, and P. Corke, “Darjeeling, a feature-
rich VM for the resource poor,” in Proc. ACM Int. Conf. Embedded
Networked Sensor Systems (SenSys), Berkeley, California, 2009, pp.
169-182.

[6] J. Carter, J. Bennett, and W. Zwaenepoel, “Implementation and per-
formance of Munin,” in Proc. ACM Symp. Operating Systems Prin-
ciples (SOSP), Pacific Grove, California, United States, 1991, pp.
152-164.

[7] D. Dhurjati, S. Kowshik, V. Adve et al., “Memory safety without
runtime checks or garbage collection,” ACM SIGPLAN Notices, vol.
38, no. 7, pp. 69-80, 2003.

[8] B. Fleisch, and G. Popek, “Mirage: A coherent distributed shared
memory design,” ACM SIGOPS Operating Systems Review, vol. 23,
no. 5, pp. 211-223, 1989.

[9] I. Gelado, J. E. Stone, J. Cabezas et al., “An asymmetric distributed
shared memory model for heterogeneous parallel systems,” in Proc.
ACM Int. Conf. Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Pittsburgh, Pennsylvania, USA,
2010, pp. 347-358.

[10] C. C. Han, M. Goraczko, J. Helander et al., “CoMOS: An operating
system for heterogeneous multi-processor sensor devices,” Technical
Report MSR-TR-2006-117, Microsoft Research, 2006.

[11] S. Huang, A. Hormati, D. Bacon et al., "Liquid Metal: Object-
Oriented Programming Across the Hardware/Software Boundary,"
ECOOP 2008 - Object-Oriented Programming, Lecture Notes in
Computer Science, pp. 76-103: Springer Berlin / Heidelberg, 2008.

[12] J. J. Labrosse, MicroC OS II: The Real Time Kernel: Newnes, 2002.
[13] C. Lattner, and V. Adve, “LLVM: A compilation framework for

lifelong program analysis & transformation,” in Int. Symp. Code
Generation and Optimization (CGO), Palo Alto, California, 2004,
pp. 75-86.

[14] K. Li, “Ivy: A shared virtual memory system for parallel computing,”
in Proc. Int. Conf. Parallel Processing, 1988, pp. 94-101.

[15] F. X. Lin, A. Rahmati, and L. Zhong, “Dandelion: a framework for
transparently programming phone-centered wireless body sensor ap-
plications for health,” in ACM Wireless Health 2010, San Diego,
California, 2010, pp. 74-83.

[16] F. X. Lin, Z. Wang, R. LiKamWa et al., “Transparent Programming
of Heterogeneous Smartphones for Sensing,” Technical Report 0310-
2011, Rice University, 2011.

[17] M. D. Linderman, J. D. Collins, H. Wang et al., “Merge: a program-
ming model for heterogeneous multi-core systems,” in Proc. ACM
Int. Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Seattle, WA, USA, 2008, pp. 287-
296.

[18] J. Liu, L. Zhong, J. Wickramasuriya et al., “uWave: accelerometer-
based personalized gesture recognition and its applications,” Perva-
sive and Mobile Computing, vol. 5, no. 6, pp. 657-675, 2009.

[19] H. Lu, W. Pan, N. D. Lane et al., “SoundSense: scalable sound sens-
ing for people-centric applications on mobile phones,” in Proc.
ACM/USENIX Int. Conf. Mobile Systems, Applications, and Services
(MobiSys), Kraków, Poland, 2009, pp. 165-178.

[20] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping,” in Proc.
IEEE/ACM Int. Symp. Microarchitecture (MICRO), New York, New
York, 2009, pp. 45-55.

[21] D. Lymberopoulos, N. B. Priyantha, and F. Zhao, “mPlatform: a
reconfigurable architecture and efficient data sharing mechanism for
modular sensor nodes,” in Proc. ACM Int. Conf. Information Proc-
essing in Sensor Networks (IPSN), Cambridge, Massachusetts, USA,
2007, pp. 128-137.

[22] J. Manson, W. Pugh, and S. V. Adve, “The Java memory model,” in
Proc. ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages (POPL), Long Beach, California, USA, 2005, pp. 378-
391.

[23] R. McIlroy, and J. Sventek, “Hera-JVM: a runtime system for het-
erogeneous multi-core architectures,” in Proc. ACM Int. Conf. Object
Oriented Programming Systems Languages and Applications (OOP-
SLA), Reno/Tahoe, Nevada, USA, 2010, pp. 205-222.

[24] D. McIntire, K. Ho, B. Yip et al., “The low power energy aware
processing (LEAP) embedded networked sensor system,” in Proc.
ACM Int. Conf. Information Processing in Sensor Networks (IPSN),
Nashville, Tennessee, USA, 2006, pp. 499-457.

[25] E. B. Nightingale, O. Hodson, R. McIlroy et al., “Helios: heteroge-
neous multiprocessing with satellite kernels,” in Proc. ACM Symp.

Operating Systems Principles (SOSP), Big Sky, Montana, USA,
2009, pp. 221-234.

[26] NVIDIA, NVIDIA Tegra 2: http://www.nvidia.com/object/tegra-
2.html.

[27] OKI Semiconductor, ML8953A: MEMS 3-axis accelerometer:
http://www.okisemi.eu/Products/Sensors/mems_accelerometer.html.

[28] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive
GPS-based positioning for smartphones,” in Proc. ACM/USENIX Int.
Conf. Mobile Systems, Applications, and Services (MobiSys), San
Francisco, California, USA, 2010, pp. 299-314.

[29] B. Priyantha, D. Lymberopoulos, and J. Liu, “LittleRock: Enabing
Energy Efficient Continuous Sensing on Moble Phones,” Technical
Report MSR-TR-2010-14, Microsoft Research, 2010.

[30] Qualcomm, Snapdragon MSM8660 and APQ8060 Product Brief:
http://www.qualcomm.com/documents/snapdragon-msm8x60-
apq8060-product-brief.

[31] B. Saha, X. Zhou, H. Chen et al., “Programming model for a hetero-
geneous x86 platform,” in Proc. ACM SIGPLAN Conf. Programming
Language Design and Implementation (PLDI), Dublin, Ireland, 2009,
pp. 431-440.

[32] Samsung, Exynos 4210 Application Processor:
http://www.samsung.com/global/business/semiconductor/productInfo
.do?fmly_id=844&partnum=Exynos%204210.

[33] D. Scales, K. Gharachorloo, and C. Thekkath, “Shasta: A low over-
head, software-only approach for supporting fine-grain shared mem-
ory,” ACM SIGOPS Operating Systems Review, vol. 30, no. 5, pp.
174-185, 1996.

[34] J. Sorber, N. Banerjee, M. D. Corner et al., “Turducken: hierarchical
power management for mobile devices,” in Proc. ACM/USENIX Int.
Conf. Mobile Systems, Applications, and Services (MobiSys), Seattle,
Washington, 2005, pp. 261-274.

[35] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory Con-
sistency and Cache Coherence: Morgan & Claypool, 2011.

[36] STMicroelectronics, MEMS motion sensor 3-axis - ± 2g/± 8g smart
digital output piccolo accelerometer:
http://www.st.com/stonline/products/literature/ds/12726/lis302dl.htm

[37] Texas Instruments, OMAP5 Platform - OMAP5430,
http://www.ti.com/ww/en/omap/omap5/omap5-OMAP5430.html.

[38] Texas Instruments, “OMAP4 Applications Processor: Technical
Reference Manual,” 2010.

[39] Texas Instruments, “TI SYS/BIOS Real-time Operating System v6.x
User's Guide (Rev. I),” 2010.

[40] G. Venkatesh, J. Sampson, N. Goulding et al., “Conservation cores:
reducing the energy of mature computations,” in Proc. ACM Int.
Conf. Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS), Pittsburgh, Pennsylvania, USA, 2010, pp.
205-218.

[41] P. H. Wang, J. D. Collins, G. N. Chinya et al., “EXOCHI: architec-
ture and programming environment for a heterogeneous multi-core
multithreaded system,” in Proc. ACM SIGPLAN Conf. Programming
Language Design and Implementation (PLDI), San Diego, Califor-
nia, USA, 2007, pp. 156-166.

[42] R. Want, “Invited Talk: Always-on Considerations for Mobile Sys-
tems,” in DAC Wrkshp. Mobile and Cloud Computing, 2010.

[43] Y. Weinsberg, D. Dolev, T. Anker et al., “Tapping into the fountain
of CPUs: on operating system support for programmable devices,” in
Proc. ACM Int. Conf. Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), Seattle, WA, USA, 2008,
pp. 179-188.

[44] S. Zhou, M. Stumm, K. Li et al., “Heterogeneous distributed shared
memory,” IEEE Trans. Parallel and Distributed Systems, vol. 3, no.
5, pp. 540-554, 2002.

http://www.nvidia.com/object/tegra-2.html�
http://www.nvidia.com/object/tegra-2.html�
http://www.okisemi.eu/Products/Sensors/mems_accelerometer.html�
http://www.qualcomm.com/documents/snapdragon-msm8x60-apq8060-product-brief�
http://www.qualcomm.com/documents/snapdragon-msm8x60-apq8060-product-brief�
http://www.samsung.com/global/business/semiconductor/productInfo.do?fmly_id=844&partnum=Exynos%204210�
http://www.samsung.com/global/business/semiconductor/productInfo.do?fmly_id=844&partnum=Exynos%204210�
http://www.st.com/stonline/products/literature/ds/12726/lis302dl.htm�
http://www.ti.com/ww/en/omap/omap5/omap5-OMAP5430.html�

	Categories and Subject Descriptors D.4.2 [Operating Systems]: Storage Management – Distributed Memories; D.4.7 [Operating Systems]: Organization and Design
	General Terms Design, Experimentation
	Keywords Heterogeneous systems, energy-efficiency, mobile systems, distributed shared memory
	Introduction
	Background
	Smartphone Sensing Applications
	Lower-Power Processors in Mobile Systems
	Programming Challenge
	Problems with Message Passing
	Problems with Software DSM

	Overview of Reflex
	Programming Constraints
	How Reflex Works
	Hardware Requirements

	Distributed Runtime Design
	Module Execution Model
	Message Transport

	Software DSM Design
	General Design Choices
	Protocol Invariant
	Asymmetric Module Roles
	Finite-state Machine Specification
	Support for Synchronization
	Notable Design Aspects

	Compiler Support for DSM
	Code Instrumentation
	Optimization for Communication

	Prototype Realization
	Reflex Runtime and Library
	Reflex Compiler Toolkit
	Hardware Platforms
	TI OMAP4
	Tri-processor hardware platform

	Evaluation
	Benchmark Applications
	Overall Performance of Reflex
	Source Code Examination
	DSM Performance
	Asymmetric Module Role Assignment
	Storage and Memory Overhead
	DSM Execution Overhead

	Related work
	Discussion
	Conclusion
	References

