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Abstract
Non-CPU devices on a modern system-on-a-chip (SoC),
ranging from accelerators to I/O controllers, account for a
significant portion of the chip area. It is therefore vital for
system energy efficiency that idle devices can enter a low-
power state while still meeting the performance expecta-
tion. This is called device runtime Power Management (PM)
for which individual device drivers in commodity OSes are
held responsible today. Based on the observations of existing
drivers and their evolution, we consider it harmful to rely on
drivers for device runtime PM.

This paper identifies three pieces of information as es-
sential to device runtime PM, and shows that they can be ob-
tained without involving drivers, either by using a software-
only approach, or more efficiently, by adding one register
bit to each device. We thus suggest a structural change to
the current Linux runtime PM framework, replacing the PM
code in all applicable drivers with a single kernel module
called the central PM agent. Experimental evaluations show
that the central PM agent is just as effective as hand-tuned
driver PM code. The paper also presents a tool called Pow-
erAdvisor that simplifies driver PM efforts under the current
Linux runtime PM framework. PowerAdvisor analyzes exe-
cution traces and suggests where to insert PM calls in driver
source code. Despite being a best-effort tool, PowerAdvisor
not only reproduces hand-tuned PM code from stock drivers,
but also correctly suggests PM code never known before.
Overall, our experience shows that it is promising to ulti-
mately free driver developers from manual PM.

Categories and Subject Descriptors D.4.7 [OPERATING
SYSTEMS]: Organization and Design

Keywords Power management; Mobile system; System-
on-a-chip; Operating system
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Figure 1: An overview of this work. (a) In the current Linux,
each driver is responsible for implementing its PM under
the runtime PM framework, which incurs high development
burden and is error-prone. (b) The central PM agent relieves
drivers from PM.

1. Introduction
A System-on-a-chip (SoC) [1–4] is often the heart of a wide
spectrum of embedded systems from tablets to wearables. It
is complex, incorporating not only multiple general purpose
cores (CPU) but also dozens of IP (intellectual property)
modules, most notably I/O controllers and accelerators such
as multimedia codec, DSP, and GPU. These IP modules
not only bring specialized functions to an SoC efficiently,
but also account for the majority of the SoC chip area [5].
Because commodity operating systems (OSes) treat these
non-CPU modules as I/O devices and manage them with
device drivers, we refer to them as devices in this work.

In a system that employs an SoC, power management
(PM) is an important design issue that requires software
and hardware collaboration. Its goal is to ensure that perfor-
mance requirements of workloads are met with the lowest
possible energy consumption. PM is critical to the energy
efficiency and therefore usability of the overall system.

This paper focuses on device runtime PM that enables/dis-
ables individual devices properly and timely when the sys-
tem is in use. Its actions are bubbled up to the hardware clock
and power hierarchy, finally leading to clock (un)gating,
power supply switching, or voltage change. Note that de-



vice runtime PM is not concerned with the CPU, which is
an orthogonal research problem [6] addressed by other OS
subsystems, e.g., cpufreq and cpuidle in Linux.

Although device runtime PM has been recognized as vi-
tal [7] due to emerging always-on workloads, it is poorly
implemented in commodity OSes such as Linux. In this pa-
per, we highlight the shortcomings of Linux device runtime
PM: as SoCs appear in the market, their device runtime PM
support is often long overdue, and is likely to be minimal
when finally implemented.

The root cause of these problems is that today’s commod-
ity OSes hold drivers responsible for PM. To understand this
problem, we identify three pieces of information as essen-
tial to runtime PM: (i) the Quality of Service (QoS) require-
ments, such as device wakeup latency, (ii) characteristics of
hardware low-power states, such as power consumption and
(iii) whether there are pending tasks for the device, that is,
tasks buffered either in the driver or in the device. While (i)
and (ii) are conveniently available to the OS, Linux obtains
(iii) by relying on drivers’ correct behaviors in invoking run-
time PM API, as shown in Figure 1(a). This reliance effec-
tively makes the runtime PM driver-directed.

As SoC design life cycles tighten and the software/hard-
ware stack bloats, we consider driver-directed PM to be
harmful. We argue for an architectural overhaul as shown
in Figure 1(b): introducing a central OS component, or cen-
tral PM agent, to relieve device drivers from their runtime
PM responsibilities. To build a central PM agent, our key in-
sight is that the above information (iii) can be made available
without the help of device drivers. We present two alterna-
tive ways to infer this information: using software to monitor
device register access or adding one register bit to the device
for exposing device busy/idle status.

Built atop the two alternative inference approaches, the
central PM agent is effective. Under interactive workloads
that frequently exercise the devices, it can automatically put
the devices into the disabled mode over 77% of the time.
Compared to manual, fine-tuned PM that already exists in a
couple of Linux drivers, this disabled time is only 3.3 per-
centage points less. The central PM agent incurs very low
overhead: in our FPGA-based implementation, the added
hardware register introduces at most 34 gates as estimated
by the synthesis tool; the device performance loss is unno-
ticeable.

To ease driver development under the current PM frame-
work, we further develop a best-effort tool called PowerAd-
visor. It observes the target driver’s behaviors in test runs,
and advises developers on where to add calls to runtime PM
API in source code. We show that PowerAdvisor is effec-
tive: it discovers previously unknown locations for adding
PM in a complicated display controller driver with 22 thou-
sand lines of code.

In summary, this paper makes three major contributions:
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Figure 2: Hardware PM infrastructure in SoC (as exempli-
fied by OMAP4) and the Linux PM frameworks

• We experimentally show that device runtime PM can be
effectively done outside of drivers, either using a soft-
ware approach based on existing hardware, or using soft-
ware with small hardware support.

• A complete design and implementation of the central PM
agent, whose performance is comparable with manual
runtime PM code in Linux device drivers.

• PowerAdvisor, a tool that effectively simplifies the devel-
opment of runtime PM in drivers under the current Linux
framework.

All source code and trace data used in this paper can be
downloaded from http://www.recg.org.

2. Background
Other than a powerful, multicore CPU, a modern SoC inte-
grates tens of hardware devices from computational devices
like GPU and face detection integrated circuit, to controllers
for I/O like I2C and display. These devices are connected to-
gether via on-chip interconnects, and expose functions to the
CPU via their registers. As shown in Figure 2, device run-
time PM on SoC is a collaboration between hardware and
software.

2.1 Hardware PM Infrastructure
We next sketch the hardware support for PM available on
SoCs. Although our descriptions are based on our under-
standing of the TI OMAP4, a popular mobile SoC with abun-
dant public information [2], we observe similar hardware
support on other SoCs [1, 3, 4, 8–12].

A Hierarchy of Domains Device is the basic unit of power
management from the perspective of software. A device can
be configured by software to be in either ENABLED or DIS-
ABLED mode: it is functional only when it is ENABLED, and
when DISABLED, it stops receiving clocks to conserve en-
ergy. Note that software, e.g., device drivers, only decides
when to disable a device, leaving the rest of the power man-
agement decisions to hardware. To save chip area, devices
on an SoC may share clocks and power supplies. This effec-
tively organizes all devices into a hierarchy of domains.

http://www.recg.org


Table 1: Device drivers of SoC families and the delay (in
months) between the driver initial release and the implemen-
tation of runtime PM. Asterisks indicate the absence of fine-
grained runtime PM at the time of writing (Jan. 2015).

Driver Delay Driver Delay
OMAP UART 12 [13] Exynos Keypad 18 [14]

OMAP WDT 22 [15] Exynos USB 14 [16]

OMAP USB 45 [17] OMAP GPIO 32 [18]

i.MX SD Ctrl 37 [19] i.MX I2C 9 [20]

Tegra SD Ctrl 48 * i.MX SPI 31 [21]

• A clock domain is a group of devices sharing the same
clock source. A domain-level clock gating shuts down the
clock source, putting the clock domain as INACTIVE and
resulting in further energy saving.

• A power domain encompasses one or more clock do-
mains. Its devices are powered by the same power rails
controlled by the same switch. The domain could either
be ON, RETENTION (a subset of transistors are on to pre-
serve hardware state) or OFF (all transistors are off and
hardware state is lost).

• A voltage domain encompasses one or more power do-
mains. Its devices share the same voltage source con-
trolled by the same regulator. It can be either ON, SLEEP
(supplying regular voltage, but limited current), RETEN-
TION (supplying minimum voltage for preserving hard-
ware state) or OFF (voltage drops to zero).

For these domains, software only chooses the target low-
power states (e.g., RETENTION, OFF); hardware decides
when to perform the actual state transitions, as discussed
below. Notably domains introduce inter-device dependence
in runtime PM, because for a domain to enter a low-power
state, all its devices must be disabled.

Global Power Manager Global power manager is a spe-
cial on-chip hardware device that coordinates devices and
domains in performing power state transitions. It sets a do-
main to a low-power state if all encompassed devices of the
domain have been configured by software as DISABLED; it
brings the domain back to a high-power state if any encom-
passed device is configured by software as ENABLED. The
manager is always on. Even when the entire SoC has been
suspended, it listens for external events and wakes up the
SoC accordingly.

2.2 Linux Support for Device Runtime PM
Linux, like other OSes, plays two key roles in device runtime
PM. Note that the Linux community often abbreviates device
runtime PM as runtime PM. We will respect the convention
when describing the related Linux API.

First, the Linux runtime PM framework provides generic
set of API for device drivers to track the number of con-
current users of a device in the form of a per-device refer-

ence counter. When the reference counter drops to zero, the
framework calls a driver callback to set the device to DIS-
ABLED. Built under this framework, a device driver should
never directly change device modes. Instead, it is responsible
for making runtime PM calls, pm get() and pm put(),
which increase and decrease the reference counter respec-
tively. In a well-designed driver, the reference counter will
reach zero whenever there is no pending task for the device,
neither buffered inside the driver nor in the device.

Second, the PM QoS frameworks allow users to express
QoS requirements (e.g., wakeup latency) to be met by the
OS. The device driver is responsible for mapping such QoS
requirements to driver parameters, such as timeout value
before disabling the device, or hardware configurations, such
as the target low-power state of the encompassing domain.

This work aims at replacing the Linux runtime PM frame-
work but retains compatibility with the PM QoS frame-
works.

3. Driver-directed PM Considered Harmful
As discussed above, the current Linux runtime PM is essen-
tially driver-directed: its correctness and efficiency fully de-
pend on a driver properly maintaining its reference counter.
For modern SoCs, we consider this approach harmful. In this
section, we provide three reasons and elaborate upon each
with a real-world case.

Runtime PM often supported after long delay. Driver de-
velopers almost always consider functionality as their first
priority, leaving PM as an afterthought. While many drivers
keep receiving new functionality over time, they get stuck
for a long time with preliminary, coarse-grained PM. Proper
PM support, if any, appears much later than the driver’s ini-
tial release.

Real-world Case: Samsung Exynos SPI controller
The SPI controller driver for the Exynos family had pre-

liminary PM code for 25 months after its first commit [22].
The preliminary PM, as shown in Listing 1, is very coarse-
grained and saves no energy at run time. It simply enables
the SPI controller in probe(), which is invoked during
system boot, and disables it in remove(), which is in-
voked during system shutdown, keeping the SPI controller
on as long as the CPU is on. The much delayed patch shown
in Listing 2 fixed the problem with a finer-grained PM,
which only keeps the controller enabled for configuration
and transmission tasks. More cases are listed in Table 1.

Complex drivers make it hard to do runtime PM. Many
devices on modern SoCs are complex. So are the drivers
that harness the hardware. The complexity makes it hard
for developers to reason about how a driver works and write
correct PM code accordingly.

Real-world Case: OMAP4 display controller driver
The display controller in modern SoC is notoriously com-

plex. The OMAP4 technical reference manual [2] dedi-



1 int s3c64xx_spi_probe(platform_device
*pdev)

2 {
3 /* allocate controller resources...*/
4 pm_runtime_get_sync(dev);
5 /*initialize the controller...*/
6 }
7
8 int s3c64xx_spi_remove(platform_device

*pdev)
9 {

10 /* deinitialize controller...*/
11 pm_runtime_put(dev);
12 /* free controller resources...*/
13 }

Listing 1: Preliminary PM that has existed in the Exynos
SPI driver for more than two years.

1 void s3c64xx_spi_work(work_struct *work)
2 {
3 pm_runtime_get_sync(dev);
4 while (!list_empty(queue)) {
5 /* transmitting message... */
6 }
7 pm_runtime_put(dev);
8 }
9

10 int s3c64xx_spi_setup(spi_device *spi)
11 {
12 pm_runtime_get_sync(dev);
13 /* set up SPI, like tx rate... */
14 pm_runtime_put(dev);
15 }

Listing 2: Hand-tuned PM in the Exynos SPI driver after
patching [22].

cates 565 pages to the display controller. The correspond-
ing Linux driver consists of 22K SLoC, featuring extensive
asynchronous execution (e.g., bottom-halves for completing
frame composition) and tens of callbacks. Not surprisingly,
the Linux driver only has preliminary power management,
leaving the controller ENABLED as long as the screen is on.
In our own attempts to patch the driver with finer-grained
PM, we found it very difficult, if not impossible, to manu-
ally identify where in the driver source code to add runtime
PM calls while still keeping the reference counter balanced
in various interleavings of execution paths.

Inter-device dependence amplifies the impact of bad drivers
Because the state of a domain depends on the state of all its
encompassed devices (§2.1), one device that is mistakenly
left on will prevent the entire domain from entering a low-
power state, ruining the PM efforts of other drivers.

Real-world Case: OMAP4 UART controller
During one entire year after its first release, the OMAP4

UART controller driver did no power management, keeping
the whole L4 PER power domain on as long as the CPU was
on [13]. Although the ENABLED UART controller consumes
a relatively small amount of power, the L4 PER domain
drains 17mW more power for not being able to enter the
default low-power state RETENTION, leading to significant
runtime inefficiency.

4. Fundamental PM Information
To fix the problems caused by driver-directed PM, we iden-
tify information that is essential to device runtime PM. Note
that much research focuses on optimizing PM policy by
exploiting complex workloads information [23–25]. Unlike
these research works, the policy of Linux PM is simple, as
has been discussed in §2.2. It requires the following three
pieces of information:

(i) The QoS requirements supplied by users, such as
wakeup latency.

(ii) Specifications of power states, including their power
consumption, and the latency and energy consumption for
transition between states.

(iii) Whether a device has pending tasks: only after a
device has finished all pending tasks that are buffered in
the driver and in the device, can the device be DISABLED.
When there is a new pending task for a disabled device, the
device needs to be enabled. Note that the functionality of
a device is not broken if it is disabled after finishing one
task and enabled before handling the next one, as long as
the driver preserves and then restores the device context,
respectively. However, this incurs unnecessary overhead due
to power-state transition. Therefore, a good PM policy keeps
the device enabled until it finishes all pending tasks.

We observe that (i) is provided by the user of the device,
e.g., user-space software or other dependent device drivers.
(ii) is static information and is available offline, either from
the vendor or by profiling.

The Linux PM infers (iii) from the value of the refer-
ence counter (whether it is zero), and relies on the driver to
properly invoke runtime PM API to maintain the reference
counter. This approach incurs high development burden [26]
and is error-prone as has been discussed in §3.

Our key insight is that information (iii) can be made avail-
able without device drivers’ efforts. We next demonstrate
that it can be inferred by monitoring memory access, or with
small modification to device hardware.

5. Pending Task Inference
As discussed above, knowing if a device has pending tasks
is key to its runtime power management. In this section,
we present two alternative ways to acquire this knowledge
outside device drivers, i.e., without device drivers’ support:
(i) a software-only approach that infers the knowledge by
monitor memory access, and (ii) a small modification, a
register bit, to device hardware that exposes whether the
device is busy or idle.



5.1 Software-based Inference
The software approach infers if there are pending tasks by
monitoring device register access initiated by the CPU. More
specifically, it is based on the following two insights:

1. If CPU has not accessed a device’s registers for a period
of time longer than a threshold Tthreshold, it is safe to
assert that the device has no pending task.
Taking I2C transmission as an example: the device reg-
isters are frequently accessed until the task is completed.
In preparing sending a message, the CPU writes to the
controller’s registers for configuring speed mode, mes-
sage length, etc. When the message is being transmitted,
the controller frequently interrupts the CPU to provide
updates, e.g., FIFO status, and the CPU accesses the con-
troller’s registers to examine and clear the interrupts.

2. On ARM-based SoCs, the memory protection mecha-
nism can be used to effectively detect device register ac-
cess. This is because ARM maps all device registers in
the global physical address space. Therefore, CPU’s ac-
cesses to device registers will go through MMU, and can
be captured as memory exceptions when required.

The choice of Tthreshold We face a trade off in choosing
Tthreshold: with a smaller value of Tthreshold, the software
approach can infer in a more timely manner if a device has
pending tasks and can capture shorter periods in which a de-
vice has no pending task. Thus, a smaller Tthreshold leads
to more aggressive PM; however, to avoid false report of no
pending task, Tthreshold needs to be greater than the largest
possible interval between register accesses when a device
has pending tasks. According to our observation of mobile
SoCs, the largest interval appears when a DMA transaction
is in progress. Given that the typical mobile SoC memory
bandwidth is a few hundred MB/s to a few GB/s, we choose
Tthreshold=100ms which is much larger than the time for a
4MB transfer, a typical maximum size of contiguous mem-
ory allocation in Linux. We will evaluate our choice in §7.1.

Applicability of Insight 1 Insight 1 applies to most, but
not all types of devices. The deciding factor is whether, for
a given device, the length of a processing period without
register access is bounded such that Insight 1 holds. For I/O
devices the length of such periods is bounded by the longest
DMA transaction as discussed above. For accelerators with
periodic tasks, the length of such periods is bounded as well:
for example, the OMAP4 face detection device interrupts the
CPU upon finishing each frame, which happens every 33ms.
However, this is not the case for complex computational
units, such as GPU or DSP, whose processing duration can
be unbounded in theory.

Limitations Although effective and immediately deploy-
able, we recognize that the software approach has the fol-
lowing limitations: (i) it is less aggressive than the PM code
in device drivers, as the device always lingers in ENABLED
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Figure 3: The structure of the Central PM agent, a concrete
design following the conceptual model shown in Figure 1(b).
The monitor employs one of the two ways for pending task
inference, which are prototyped on two respective SoCs.

after there has been no pending task for Tthreshold, which
is lower bounded by the largest register access interval; (ii)
it incurs memory exceptions, which comes with overhead,
though small, as evaluated in §7.1.

5.2 Hardware-assisted Inference
In order to avoid the limitations of the software approach,
we find that small hardware modifications will suffice: a
busy/idle register bit per device.

By polling this register bit periodically, the OS can esti-
mate how long a device has been idle and then infer whether
a device has pending tasks. Note that even if a device has
been idle for only a few milliseconds, the OS can be certain
that the device has no pending task because a device always
starts processing pending tasks immediately after finishing
the current one. Hence, by applying a small polling period,
the OS can infer if a device has pending tasks in a timely
manner, which enables more aggressive PM than the soft-
ware approach in §5.1 does. Moreover, the polling does not
incur memory exceptions and is thus more lightweight.

The modifications can be easily implemented on modern
SoC hardware. A device already possesses the knowledge
on whether it is busy processing a task or not: in its imple-
mentation, a device hardware is typically designed as a state
machine using a hardware description language. Among all
possible states, a subset represent the device being idle.
Therefore, the busy/idle register is essentially a mapping
from these states to a single bit.

6. Central PM Agent
With the pending task information inferred, we can realize
device runtime PM of all applicable devices in a single
kernel module, called central PM agent. The central PM
agent relieves driver developers from reasoning where to
insert runtime PM calls in driver source code (§2.2). In this
section, we first describe the overall structure of the central
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Figure 5: Example implementation of the one-bit busy/idle
register, (a) in several tens of gates and (b) in several lines
of code in Verilog.

PM agent and then how the software and hardware-assisted
solutions for pending task inference fit in the design.

6.1 Overall Structure
As shown in Figure 3, the central PM agent consists of two
major components: the monitor and the controller. The mon-
itor infers whether a device has pending tasks, which can be
implemented in software on top of the existing hardware or
with the assistance of the busy/idle register bit. Based on the
monitor output, the controller calls the PM callbacks pro-
vided by the driver to set the device to ENABLED/DISABLED
mode.

6.2 Software Pending Task Monitor
The software pending task monitor is based on the insights
presented in §5.1: a device has no pending task if CPU has
not accessed its registers for Tthreshold. Every Tthreshold

period, the monitor checks if a device’s registers have been
accessed since the last check, i.e., in the past Tthreshold. In
order to do so, the monitor maintains a per-device software
status: dirty means that CPU has accessed the device’s
registers since the last check; clean otherwise.

Figure 4 illustrates how the central PM agent works for
a device through an example timeline. During initialization,
the monitor sets the software status to clean and sets up a
check timer that will fire every Tthreshold interval.

Every time the timer fires, the monitor does two things.
First, it checks the software status: clean ( 3 ) indicates
that none of the device’s registers have been accessed in
the past Tthreshold. Based on Insight 1 in §5.1, the monitor
concludes that the device has no pending task, and notifies
the controller to disable the device. If the status is dirty,
the monitor simply sets it to clean.

Second, the monitor invalidates the page table entries that
correspond to the device’s registers, so the next access to
any of these registers will trigger memory exception, which
will be handled by the central PM agent. This is based on
Insight 2 in §5.1.

A memory exception occurs upon the first access to any
of the device’s registers since last check. The monitor han-
dles the exception and sets the software status to dirty,
indicating that an access has occurred. Then it checks the
device mode: if DISABLED ( 1 ), the monitor notifies the con-
troller to enable the device; otherwise, if the device is already
ENABLED ( 2 ), the monitor takes no action. Finally, it val-
idates the page table entries to allow further register access
to pass through without incurring any exception.

Implementation on OMAP4 SoC We implement the cen-
tral PM agent based on the above monitor design as a kernel
module on the OMAP4 SoC. We choose OMAP4 because it
has abundant public information.

6.3 Hardware-assisted Pending Task Monitor
We add the busy/idle register bit to existing devices, so that
(i) the runtime PM can be more aggressive and (ii) the design
of the monitor is simplified and incurs less overhead. We
next describe how we design the busy/idle register and revise
the design of the monitor accordingly.

Mapping device state machine to busy/idle register As
discussed in §5.2, device hardware is described as state ma-
chines, with a subset of the states representing the device
being idle. We design the semantics of the busy/idle register
as follows:

The busy/idle register is set to busy when the state ma-
chine leaves the idle states; it resets to idle immediately after
a read if the state machine is in an idle state when the read
happens. Thus, if the register shows busy, it does not nec-
essarily mean the device is busy at the moment. Instead, it
indicates the device has been busy at least once since the last
read of the busy/idle register. On the other hand, if the regis-
ter shows idle, the device must have been idle since the last
read of the busy/idle register.

Because the logic of a busy/idle register re-uses the state
machine in the hardware, it requires very little hardware re-
sources and development effort to implement. As the con-
ceptual design in Figure 5(a) shows, aside from a busy/idle



Table 2: The cost of adding the busy/idle register. Develop-
ment time is in man-hours. ∗unknown because Xilinx spe-
cific FPGA primitives cannot be synthesized to ASIC.

Module Development Effort FPGA Resources ASIC Resources 
LoC Time LUTs Registers Gates 

Xilinx I2C 93 (+1.2%) 12 16 (+3.8%) 8 (+2.4%) N/A* 
Opencores SPI 15 (+6%) 5 1 (+1.3%) 1 (+1.5%) 15 (+1.1%) 

Opencores I2C 20 (+2%) 10 4 (1.8%) 1 (+0.6%) 34 (+1.6%) 

 

register bit, the design merely requires several gates to ex-
tract the needed information from the state machine. Fig-
ure 5(b) shows that several lines of Verilog code suffice to
describe the logic of the busy/idle register.

Using the busy/idle register Instead of triggering memory
exceptions, the monitor polls the busy/idle register periodi-
cally to estimate how much time has elapsed since the com-
pletion of the most recent task. Based on this information,
the monitor infers whether the device has pending tasks. As
discussed in §5.2, a smaller polling period enables more ag-
gressive PM. However, frequently polling the busy/idle reg-
ister wastes CPU cycles and energy. In practice, we expect
that a polling interval of tens of milliseconds is aggressive
enough.

Implementation on Zynq-7000 SoC We choose Zynq [27]
for using its on-chip FPGA to prototype the busy/idle reg-
ister. Moreover, the FPGA has dedicated clocks that can be
gated in software without affecting the rest of the system.
We add a busy/idle register to an Xilinx I2C controller [28],
and instantiate the modified I2C controller in the FPGA. We
run the central PM agent on Zynq’s CPU. As shown in Ta-
ble 2, the development effort in modifying the I2C controller
is small. The extra FPGA resources and the estimated num-
ber of extra gates required for ASIC implementation are also
small. Note that our modification is largely unoptimized and
the resource usage should be read as upper bounds.

In order to further experiment with the busy/idle regis-
ter, we implement it by modifying an Opencores I2C con-
troller [29] and an Opencores SPI controller [30] written in
Verilog. As shown in Table 2, the involved development ef-
fort and extra resources are similarly small.

7. Evaluation
In the evaluation, we experimentally answer the following
questions:

1. Can the central PM agent effectively save power, as com-
pared to manual PM?

2. What is the associated runtime overhead introduced by
the central PM agent?

3. Can the central PM agent correctly use the added busy/i-
dle register?

7.1 Software Central PM
We evaluate the software central PM agent on Pandaboard
Rev B2, which employs OMAP4460 SoC. It runs Linaro
Android release 13.10. The kernel version is 3.2, the latest
kernel that supports Android on OMAP SoC. Its driver code
base receives contributions regularly from TI and Google.

7.1.1 Methodology
We use the central PM agent to automatically control four
widely used and representative devices: the multimedia card
(MMC) controller, the secure digital input/output (SDIO)
controller, the I2C controller, and the display controller
(DISPC). We use a trace collected from interacting with the
Pandaboard to test the central PM agent. The trace is of 600
seconds and contains 48 user input events, including read-
ing emails with the Android email application and browsing
the web with the default Android browser. These activities
exercise the drivers of the four devices extensively.

In running the benchmark for each device, we measure
the total length of DISABLED periods. We run the benchmark
with the central PM agent, and with the existing PM code if
there is any.

7.1.2 Effectiveness of Central PM Agent
We show that the central PM agent is able to manage
devices as effectively as the hand-tuned PM code in the
MMC controller and I2C controller drivers: the difference
in the disabled time is within 3.3 percentage points (with
Tthreshold=100 ms). Moreover, the central PM agent pro-
vides PM to the SDIO controller and DISPC drivers that
lack PM code. We next describe the results for the four de-
vices in detail.

MMC controller. On many embedded systems, the CPU
accesses the root filesystem through a MMC controller. The
Linux MMC controller driver comes with hand-tuned PM
code. To examine how well the central PM agent works for
it, we disable the PM code and run the benchmark, which
generates extensive file operations (e.g., saving email attach-
ment, application launch) to exercise the MMC controller
driver. As shown in Figure 6(a), when Tthreshold is 100ms,
the central PM agent keeps the MMC controller in DIS-
ABLED for 77.2% of the time, which is only 3.3 percent-
age points less than the hand-tuned PM. If we aggressively
reduce Tthreshold to 50ms, the disabled time under the con-
trol of the central PM agent is actually 1.9 percentage points
more, as the hand-tuned PM chooses to disable the controller
after a 100ms idle timeout.

I2C and SDIO controllers. The I2C and SDIO controllers
on Pandaboard together bridge the CPU with the Wi-Fi in-
terface. The I2C controller driver comes with hand-tuned
PM; the SDIO driver does not, leaving the SDIO controller
always on as long as the Wi-Fi interface is enabled, even
when no data is being transmitted. The benchmark exercises
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(d) Display Controller

Figure 6: Device DISABLED time with different Tthreshold, with the default being 100ms in this paper. The Linux stock drivers
in (a) and (b) come with hand-tuned PM code while that of (c) and (d) does not. In (c) and (d), we have slightly shifted up
the lines for Linux stock drivers to make them visible since they are 0. With Tthreshold=100ms, the central PM agent saves at
most 17mW by disabling (c) the SDIO controller, and 10mW by disabling (d) the display controller.

the two drivers with rich network activities generated from
web browsing and email fetch. The results are shown in Fig-
ure 6(b) and Figure 6(c). When Tthreshold is 100ms, the cen-
tral PM agent keeps I2C controller DISABLED for 81.2% of
the time , which is only 2.1 percentage points less than the
hand-tuned PM; the central PM agent keeps SDIO controller
DISABLED for 78.8% of the time.

DISPC. The display controller, or DISPC, overlays multiple
rendered frames into a final buffer that is co-located with the
video output interface, HDMI in our setup. Its driver comes
with no runtime PM, keeping DISPC ENABLED as long
as the display is on, missing the power-saving opportunity
when the displayed image is still and DISPC has no task.
The results are shown in Figure 6(d). When Tthreshold is
100ms, the central PM agent keeps the DISPC DISABLED
for 84.5% of the time.

Impact of Tthreshold. When Tthreshold is larger than
100ms, the time in which the central PM agent keeps the
four devices in DISABLED state decreases noticeably. With
a larger Tthreshold, a device not only lingers in a high-power
state for longer time after the last task is finished, but also
misses power-saving opportunities for periods without pend-
ing tasks but shorter than Tthreshold. We have also tried a
reduced Tthreshold of 50ms, which at most leads to a trivial
5.2% increase of device DISABLED time. We believe this is
because most periods without pending tasks are longer than
50ms. Hence, we choose Tthreshold=100ms as the default
value, which is safe as stated in §5.1.

7.1.3 Estimated Overall Energy Saving
We have shown that the central PM agent provides effective
runtime PM to drivers that lack PM code, i.e., the SDIO con-
troller and DISPC. We next show that the resulting energy
savings are significant.

We measure the power consumed by the two devices by
physically sampling current on power rails [31]. By dis-

abling the DISPC, the central PM agent saves 10mW. Al-
though the SDIO controller itself consumes very little power,
disabling it saves 17mW because an enabled SDIO con-
troller blocks the encompassing power domain from entering
RETENTION.

The resulting energy savings are significant, estimated
from smartphone daily usage reported in LiveLab [32]. For
the SDIO controller, the stock driver keeps it always EN-
ABLED as long as the user has not manually switched off the
Wi-Fi; compared to the stock driver, the central PM agent
saves up to 71.4mWh daily which extends the standby time
by 2.4 hours. For the DISPC, the stock driver keeps it al-
ways ENABLED as long as the screen is on; compared to the
stock driver, the central PM agent saves around 18.5mWh
daily, which extends the standby time by 0.6 hours. Given
that a smartphone usually lasts for 0.7 to 2 days with aver-
age use [33], extending the standby time by a total of 3 hours
is a significant gain. We note the LiveLab data was collected
about four years ago; the gain would be more if the user
uses the smartphone more because runtime PM saves power
when the system is in use. We further estimate that the rela-
tive gain may be considerably higher on systems like Google
Glass that use a similar SoC but have lower overall power
consumption due to smaller displays.

7.1.4 Overhead of Central PM Agent
The central PM agent incurs very small overhead at run
time, which mainly comes from the memory exceptions in-
troduced by software inference. By using CPU performance
counters, we measure that each memory exception takes
around 2500 cycles, which is 8 µs if the CPU is at the low-
est frequency 300MHz. Note this overhead occurs only once
for each device every Tthreshold, which is typically 100 ms.

To understand the impact of this overhead, we stress
the SD card (backed by the MMC controller) and the Wi-
Fi interface (backed by the SDIO and I2C controllers) and
measure the performance loss due to the central PM agent.
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Figure 7: Performance of devices managed by central PM
agent under stress tests, as compared to the stock Linux.

All results are averaged over 10 iterations. To stress the
SD card, we invoke dd to read/write a 100MB file. We
force dropping pagecache before each read test and use the
fdatasync option in the write test. To stress the Wi-
Fi interface, we use iperf [34] to measure the maximum
TCP throughput. We run each iteration for 10 seconds, and
manually interleave two types of runs (with and without the
central PM agent) to exclude the impact of possible wireless
signal fluctuation. As shown in Figure 7, the throughput
loss due to the central PM agent is smaller than the standard
deviations and thus negligible, for both the SD card and the
Wi-Fi interface.

7.2 Hardware-assisted Central PM
We prototype the hardware-assisted central PM agent on the
Zynq SoC. As described in §6.3, we instantiate the modi-
fied I2C controller on Zynq’s FPGA. We then develop test
software running on Zynq’s CPU to validate that the busy/i-
dle register has the expected behavior. We further connect
Zynq with an external accelerometer [35] over the I2C bus.
Managed by the central PM agent, Zynq can communicate
with the accelerometer correctly, showing that the central
PM agent supported by our busy/idle register is working
without breaking any device functionality. In addition, our
effort in bringing up the central PM agent on Zynq is small.

8. PowerAdvisor for PM Code Suggestion
So far we have argued for an overhaul to the Linux PM. Can
we simplify driver development under the current runtime
PM framework without such an overhaul? To answer this
question, we build PowerAdvisor, a software tool that sug-
gests where to add runtime PM calls in existing driver source
code. Consisting of an instrumenter and an offline analyzer,
the tool analyzes historical execution trace and makes sug-
gestions accordingly.

Figure 8 shows the workflow of PowerAdvisor. A devel-
oper first instruments the driver with the tool. In test runs,
the developer exercises the instrumented driver with vari-
ous user workloads. The instrumented driver will generate a
trace; the analyzer then examines the trace and outputs a list

of source locations where pm get() or pm put() shall be
inserted.

8.1 Division of Responsibility between PowerAdvisor
and Developers

PowerAdvisor is best-effort. It greatly simplifies, but does
not completely relieve driver developers from, PM efforts.
It provides the following guarantees to the developer. If the
driver were patched with the suggested runtime PM calls, in
the test run from which the trace has been generated:

G1 During any no-pending-task period (that is, any period
longer than Tthreshold during which no device register
access occurs, as described in Insight 2 in §5.1), the PM
reference counter would remain as zero, implying that the
hardware device remains DISABLED.

G2 At the moment of any device register access, the ref-
erence counter would be above zero, implying that the
hardware device is ENABLED at that moment.

Given the guarantees, the developers need to further rea-
son about the following two questions:

Will the added PM code break device functionality? Pow-
erAdvisor cannot guarantee that the suggested PM calls will
not break device functionality. This is due to the incomplete-
ness of the tool’s knowledge about device internals: although
the tool can safely assume that no task is being processed
in a device during no-pending-task periods, at an arbitrary
moment outside of such periods, it has no visibility into the
device to decide if a task is being processed there. Note that
the tool cannot assume that the device has to be always EN-
ABLED outside of no-pending-task periods, a constraint so
strong that it suppresses useful suggestions.

Will the added runtime PM calls be effective in future
executions? PowerAdvisor makes suggestions purely based
on historical observations. The above two guarantees only
apply to the trace it has observed; developers need to reason
if the PM code is effective under different execution paths.

We believe it is feasible to reason about the two ques-
tions above in practice. For the first question, as the num-
ber of suggested PM calls is usually moderate, reasoning
about whether these calls break device functionality is often
tractable. For the second question, moderately extending the
length of test runs and increasing workload variation is effec-
tive. For instance, a test run longer than a few minutes is of-
ten sufficient for the tool to reproduce hand-tuned PM. Fur-
thermore, symbolic execution tools, such as KLEE [36], are
able to produce high-coverage test runs. Because of these,
we believe PowerAdvisor as a best-effort tool is useful in
practice. We will show experimental evidences in §8.3.

8.2 PowerAdvisor Internals
For suggesting runtime PM calls, PowerAdvisor considers
the following candidate locations:
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Figure 8: The workflow of PowerAdvisor

• pm get(): the start of any basic block that contains
device register access; the location before call sites that
may lead to device register access.

• pm put(): the end of any basic block that contains
device register access; the location after call sites that
may lead to device register access.

The choice of these candidate locations is based on the
following rationale. Intuitively, the tool should consider the
start and the end of basic blocks that contain device register
access to fulfill G1 and G2 in §8.1. Furthermore, as one
of such basic blocks may be included in various execution
paths, we want the tool to be able to insert runtime PM calls
that only affect a subset of these paths. On the other hand,
we need to limit the number of candidate locations and make
the resulting problem tractable. As a trade-off, we choose to
instrument all call sites that may lead to such basic blocks.

8.2.1 Inserting Tracepoints
At compile time, the driver is firstly compiled as Intermedi-
ate Representation (IR). The instrumenter’s job is to insert
trace points into the driver IR to collect runtime information
about candidate locations for PM calls.

To do so, the instrumenter first marks basic blocks that
contain device register access, and call sites that may lead
to the functions that contain device register access. This is
a fairly easy job, as Linux kernel uses dedicated macros to
encapsulate device register access.

With the markings, the instrumenter inserts trace points
at four types of code locations: the start and the end of each
marked basic block, and the locations before and after each
marked call site. The instrumenter statically assigns each
tracepoint a unique identifier that can be retrieved at run
time.

8.2.2 Collecting Trace
As shown in Figure 8, in a test run, whenever a trace-
point is reached by the control flow, it appends its identifier
into an global trace buffer. In addition, an entry for a no-
pending-task period is inserted in the same buffer when the
interval between two consecutive tracepoints is larger than
Tthreshold. This is done by a small piece of code added to
the kernel.

After the test run, the resulting trace is a sequence of
tracepoint identifiers delimited by no-pending-task periods.

8.2.3 Analyzing Trace
Overall, the PowerAdvisor analyzer looks for legal PM calls
that, when applied to the collected trace, satisfy the guaran-
tees in §8.1. The analyzer translates the problem into a Sat-
isfiability Modulo Theories (SMT) problem, with the linear
integer arithmetic as the background theory. It establishes
SMT constraints based on the trace, and invokes the Z3 SMT
solver [37] to identify the PM calls that should be inserted.

We next briefly describe the SMT problem in an informal
way. All variables in the SMT problem correspond to the
candidate PM call locations that have appeared in the trace,
which are the union of four subsets: the start (SBB GET )
and the end (SBB PUT ) of the marked basic blocks, before
(SCS GET ) and after (SCS PUT ) the marked call sites:
V = SBB GET ∪ SBB PUT ∪ SCS GET ∪ SCS PUT (1)
We define the possible values of the SMT variables as the

delta applied to the reference counter by the corresponding
PM calls.

∀v ∈ SBB GET ∪ SCS GET , v ∈ {0, 1}
∀v ∈ SBB PUT ∪ SCS PUT , v ∈ {0,−1}

(2)

The analyzer further translates the collected trace into a
set of SMT constraints. In order to do so, the analyzer first
splits the trace into multiple subsequences delimited by no-
pending-task periods, and generates constraints from each
subsequence.

We next zoom in on one subsequence Q = {qi}i=1..N .
According to our discussion of trace collection, each element
of the subsequence is an appearance of one SMT variable in
V . A SMT variable from V might appear one or multiple
times in Q.

Based on Q, the analyzer asserts the following two sets
of constraints that are directly mapped to the two guarantees
G1 and G2 in §8.1. First, G1 requires the reference counter
to be zero in the no-pending-task period following the sub-
sequence. That is, all pm get() and pm put() in the sub-
sequence are balanced. ∑

qi∈Q
qi = 0 (3)

Second, G2 requires the device to be enabled when the
control flow enters any basic block containing device register
access, i.e., the PM reference counter to be larger than zero.

∀j ∈ {1...N}, if qj ∈ SBB GET , then
j∑

i=1

qi > 0 (4)

Note that the analyzer generates the constraints (3) and
(4) for all subsequences in the trace.

At last, the analyzer minimizes the number of introduced
PM calls C =

∑
vi∈V

|vi|.

In order to do so, the analyzer assigns different constants
to C, from the smallest possible value C = 2 upward, and
invokes the SMT solver on each resulting SMT problem. It
stops when a solution is found.



Table 3: Driver traces used in evaluating PowerAdvisor.
∗#NPT stands for the number of no-pending-task periods.

Device 
Trace SMT Problem 

Time (s) #Entries #NPT* #Vars #Constraints 
MMC ctrl. 50.2 20,000 19 58 4,930 
I2C ctrl. 33.9 5,000 13 32 1,480 
SDIO ctrl. 24.4 5,000 78 14 1,708 
DISPC 183.2 679,915 275 294 126,274 

 

With the found solution, the analyzer maps the SMT
variables with non-zero values to the corresponding source
lines, and suggests that the developer insert PM calls there.

We note that the above SMT problem can be expressed as
a Integer Linear Programming problem and solved more effi-
ciently by an linear programming solver like CPLEX [38]. In
our prototype of PowerAdvisor, we use the Z3 SMT solver
because we are more familiar with it.

8.3 Evaluation of PowerAdvisor
We experimentally show that the PowerAdvisor can offer
useful and correct suggestions. To do so, we study the drivers
of the four devices used in §7.1. We generate driver traces by
using the Android system to browse the web and navigate
among multiple applications; for validating the suggested
PM code, we replay the user trace described in §7.1 on the
Android system.

Statistics of collected driver traces and resulting SMT
problems are shown in Table 3. Note that the driver trace
for the DISPC is much longer as its driver is significantly
more complex than others.

As mentioned in §7.1, the drivers of the MMC and I2C
controllers come with hand-tuned PM code, which has been
removed by us before the test runs. Based on the driver
traces, PowerAdvisor suggests PM calls identical to the
hand-tuned code.

The drivers of the SDIO controller and DISPC come with
no PM code. For the SDIO controller driver, PowerAdvisor
suggests two pairs of pm get() and pm put(), which dis-
able the SDIO controller for more than 85% of the time in
the validation run. For the DISPC driver, whose complexity
defeated our attempts of manually adding PM code, Pow-
erAdvisor discovers a pair of pm get()/pm put() to be
invoked when any interrupt handler is registered and unreg-
istered, respectively. With the suggested PM code applied,
the driver is able to disable the display controller for 90.5%
of the time during the validation run. We further stress-test
the driver with continuous animation on the screen. The
driver runs for more than 48 hours without breaking the de-
vice functionality, and correctly disables the device in no-
pending-task periods.

9. Related Work
Power management (PM) is critical not only to system effi-
ciency but also to performance as we enter the dark silicon
era [39]. We roughly categorize prior PM works into system
suspension management and runtime PM. We also discuss
model checking and code synthesis tools that are related to
PowerAdvisor.

System suspension management. In system suspension,
most SoC components (including CPU) are off, leaving on
only the necessary circuitry for wakeup. Although effec-
tive and popular, system suspension challenges software to
properly and timely drive hardware in and out of the sus-
pension state. Android opportunistically suspends the entire
SoC if no user interaction has occurred recently. In addi-
tion, it allows applications to override this policy by holding
wakelocks. This relies on application developers for correct
PM, leading to many power bugs, e.g., no-sleep [40] and
sleep conflict [41], and has stirred up long debates in the
Linux community [42]. Many have suggested ways to de-
tect power bugs due to wakelock misuse, e.g., by detecting
abnormal energy-hungry phases in applications [43], mon-
itoring I/O bus traffic [41], and static analysis of source
code [40]. Notably, the static analysis techniques used by
Pathak et al. [40] only work well for programs having single
entry/exit point. Unfortunately, device drivers usually have
multiple entry/exit points, e.g., callbacks registered with var-
ious Linux frameworks and interrupt handlers. Moreover, the
static analysis techniques only handle wakelocks that are not
reference counted, while the Linux runtime PM framework
indeed relies on reference counters. In contrast, our Power-
Advisor is based on execution trace generated from test runs
and thus is not subject to the limitations discussed above.

Runtime power management. The goal of runtime PM is
to reduce power consumption when the system is still in use.

Runtime PM for Computational Unit: A rich set of
works focus on matching the performance of computational
units, e.g., CPU or GPU, with the expectation of given work-
loads. Vertigo[6] uses a hierarchy of performance-setting al-
gorithms to choose the CPU operating point for interactive
applications. The Process Cruise Control framework [44]
and the Koala framework [45] adjust the CPU performance
for given workloads according to the workloads character-
istics captured with performance counters. Pathania et al.
adjust the performance point of CPU and GPU together ac-
cording to 3D game workloads history to save energy [46].
Gupta et al. point out that the power consumed by uncore
components, e.g., memory controller, should be considered
in making runtime PM decisions for the CPU [47].

Runtime PM for Device: Device runtime PM aims at dis-
abling individual devices that are not in use when the system
is in use. Compared to system suspension, device runtime
PM is finer-grained and can leverage more power-saving op-
portunities. If done properly, device runtime PM can bring



the power consumption by an SoC to as low as system sus-
pension does [42] while allowing the system to remain re-
sponsive to external events. It is recognized by the Linux
kernel community that device runtime PM is becoming in-
creasingly important as more always-on applications emerge
on personal computing devices [7].

The central challenge to device runtime PM is to turn
off unused devices in a timely manner. This is difficult
as the OS and the SoC hardware are complicated. Intel
engineers report great engineering efforts in implement-
ing runtime PM for their Medfield SoC. They also advo-
cate hardware-supplied information for detecting pending
tasks [26]. ICEM [48] integrates PM code into locks for
device drivers. However, the approach only focuses on a
specific class of device drivers (“shared drivers”) which is
uncommon in Linux for modern SoCs, according to our
observation. Anand et al.[49] propose a new I/O API for ap-
plications to disclose hints for better device PM. Although
sharing the similar goal of device runtime PM with such
prior work, we seek to maintain the existing Linux API and
are not restricted to a subset of devices. In a previous pa-
per [50], we present a preliminary implementation and the
results of the software central PM agent.

Formal methods and synthesis tools. PowerAdvisor (§8)
is related to software tools that use formal methods for bug
finding or code synthesis. However, these tools, when ap-
plied to PM, cannot make the developer’s task much easier.
Model checking tools like CBMC [51] and symbolic exe-
cution tools like KLEE [36] can be used to verify if a de-
vice is disabled when the control flow reaches given source
code locations. However, it is up to the developers to man-
ually identify those locations where the device must have
no pending task. In theory, automatic device driver synthesis
tools like Termite [52] can synthesize PM code given for-
mal device specifications, either derived from the documen-
tation or RTL (register transfer level) description of a device.
However, it is unclear whether deriving such formal specifi-
cations is any easier, if not harder, than writing driver PM
code.

10. Concluding Remarks
How far can hardware PM support go? We have shown
that a small hardware modification (§5.2) can go a long way.
However, shifting the runtime PM responsibility entirely to
hardware is unwise as it may result in much higher hardware
complexity: (i) each device must fully preserve its hardware
context before hitting off, possibly by implementing a RE-
TENTION state, instead of relying on the software to preserve
the hardware context; (ii) each device must be capable of in-
terpreting various PM QoS requests expressed by users.

How general is the central PM agent? As mentioned in
§5.1, the central PM agent is applicable to an SoC device as
long as it is (i) memory-mapped, (ii) with bounded register-

access interval. Additionally, if an SoC device serves as a
slave in a communication protocol, e.g., an I2C slave, then it
has to be (iii) interruptible when in a low-power state. These
conditions are true for most devices on ARM-based SoCs.
In particular, to satisfy (iii), most devices rely on platform-
specific hardware mechanisms, e.g., asynchronous wakeup
or re-routing interrupt signal through GPIO. However, a
device such as an Ethernet controller on a TV SoC lacks
such hardware support as of now, making its runtime PM
difficult in general.

Conclusion Device runtime PM requires the OS to disable
devices that have no pending task in a timely manner. Cur-
rently, Linux places this burden on driver developers, who
unfortunately implement runtime PM poorly in most cases.
To address this issue, we relieve drivers from PM by build-
ing a central PM agent that automatically performs runtime
PM, according to its observation and inference on whether
there are pending tasks for the device. We propose two alter-
natives for performing the inference, one with existing hard-
ware and the other with added hardware support. In addition,
we demonstrate it is possible and useful to have a best-effort
software tool that suggests where to add PM calls in driver
source code, an approach reducing (but not eliminating) de-
velopers’ efforts in reasoning about PM without structural
changes to the OS.
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