
memif : Towards Programming
Heterogeneous Memory Asynchronously

Felix Xiaozhu Lin
Purdue ECE

xzl@purdue.edu

Xu Liu
College of William & Mary

xl10@cs.wm.edu

Abstract
To harness a heterogeneous memory hierarchy, it is advan-
tageous to integrate application knowledge in guiding fre-
quent memory move, i.e., replicating or migrating virtual
memory regions. To this end, we present memif, a protected
OS service for asynchronous, hardware-accelerated memory
move. Compared to the state of the art – page migration in
Linux, memif incurs low overhead and low latency; in or-
der to do so, it not only redefines the semantics of kernel
interface but also overhauls the underlying mechanisms, in-
cluding request/completion management, race handling, and
DMA engine configuration.

We implement memif in Linux for a server-class system-
on-chip that features heterogeneous memories. Compared
to the current Linux page migration, memif reduces CPU
usage by up to 15% for small pages and by up to 38× for
large pages; in continuously serving requests, memif has no
need for request batching and reduces latency by up to 63%.
By crafting a small runtime atop memif, we improve the
throughputs for a set of streaming workloads by up to 33%.
Overall, memif has opened the door to software management
of heterogeneous memory.

Categories and Subject Descriptors D.4.7 [OPERATING
SYSTEMS]: Organization and Design

Keywords Operating Systems; Heterogeneous Memory;
Data-intensive Computing

1. Introduction
Memory accesses have become a major performance bottle-
neck in modern data-intensive applications, e.g. big data and
high performance computing (HPC) workloads. The reasons

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’16, April 2–6, 2016, Atlanta, Georgia, USA..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4091-5/16/04. . . $15.00.
DOI: http://dx.doi.org/10.1145/2872362.2872401

are large working sets and cache/prefetcher-unfriendly ac-
cess patterns. These applications often incur substantial last-
level cache misses, suffering from long memory latency [19,
61].

To bridge the speed gap between CPU and memory, mod-
ern computers have already employed complex memory
hierarchies, including multi-level caches and non-uniform
memory access (NUMA) designs. Moreover, emerging ar-
chitectures are embracing heterogeneous memory, a mixture
of fast and slow memory banks that also have significantly
different capacities. Fast memories are often built as on-chip
SRAM [4], embedded DRAM [23], or die-stacked mem-
ory [1, 7]; slow memories are often DRAM or NVRAM.

Unsurprisingly, heterogeneous memory raises new chal-
lenges to the hardware-software stack. Most prior work
seeks to make memory heterogeneity transparent to applica-
tions: this includes hardware mechanisms that manage fast
memory as a large cache [40] or part of main memory [54]
and OS support that monitors memory access patterns and
moves memory data accordingly [45].

Despite the efficacy of the transparent approaches, we
believe that they miss a key opportunity: user knowledge.
To this end, our driving vision is to empower user, i.e., a
synergy among programmer, runtime, and compiler, to ex-
plicitly control a heterogeneous memory hierarchy. Towards
this vision, we first lay the software foundation by abstract-
ing heterogeneous memories as individual pseudo NUMA
nodes. The NUMA abstraction for heterogeneous memory,
despite its dismissal in prior work [45], enables us to reuse
mature OS facilities with great ease. To the best of our
knowledge, our work is the first implementation of NUMA
abstraction on real heterogeneous memory hardware.

Based on the abstraction, our top design challenge is to
support moving virtual memory regions – either replicating
or migrating them – as requested by applications. Such an
OS service is both desirable and feasible: on one hand, im-
promptu, frequent memory move is proven vital to the use
of heterogeneous memory [20, 52], of which faster memo-
ries usually have limited capacity and thus have to be used
efficiently; on the other hand, modern hardware has already
provided good support for memory move, including ample

off-chip memory bandwidth [19, 29], cache-coherent DMA
engines [58], and a variety of page sizes.

However, moving memory regions efficiently is challeng-
ing. Without a careful design, the overheads of kernel inter-
face, virtual memory management and byte copy can easily
overshadow what applications can benefit from fast mem-
ory. As we will show in Section 2, the closest service in
commodity OSes, page migration for NUMA [33], is in-
tensive on both CPU and virtual memory. Point solutions,
such as exposing DMA engines to userspace or reserving
large chunks of physical memory, are unsafe or impractical
to generic workloads.

To address this challenge, we present memif, an OS
service offering asynchronous, DMA-accelerated memory
move. Unlike userspace DMA drivers, memif is protected
and compatible with commodity OSes. To make memif’s in-
terface low overhead and low latency, we apply two primary
ideas: i) making user and kernel directly share lock-free data
structures, including a unique red-blue lock-free queue; ii)
using kernel threads to fetch memory move requests and
post completion notifications without synchronizing with
applications. Both ideas are rarely seen in existing kernel
subsystems, such as GPU or NIC drivers. Accordingly, we
overhaul kernel mechanisms that are known expensive: page
lookup, race handling, and DMA engine reconfiguration.

To offer a proof of concept, we design and implement
memif on the Texas Instruments KeyStone II, a server-
class system-on-chip (SoC) featuring heterogeneous mem-
ory [59]. Compared to Linux page migration, memif reduces
CPU usage by up to 15% for small pages (4KB) and up to
38× for large pages (2MB); in continuously serving user
requests, it does not require request batching and reduces
the latency by up to 63%. On top of memif, we showcase
a simple runtime for supporting streaming workloads and
gain up to 33% throughput by tapping into KeyStone II’s
heterogeneous memory.

Overall, memif lays the foundation for software to di-
rectly manage heterogeneous memory at medium (hundreds
of KB) or coarse (multiple MB) granularities. Atop memif,
we expect that compilers or runtime will decide when and
where to move memory by leveraging their domain knowl-
edge. Together, the OS, runtime, and compiler will enable
efficient exploitation of memory heterogeneity without bur-
dening application programmers.

We have made the following contributions:

• A novel user interface that enables applications to submit
memory move requests and receive completion notifica-
tions asynchronously, with no batching and little user/k-
ernel synchronization;

• A suite of overhauled kernel mechanisms for detecting
races (instead of avoiding them), efficiently looking up
pages, and quickly reconfiguring the DMA engine;

• A detailed cost breakdown, evaluation, and application
case study of memif on real heterogeneous memory hard-
ware.

The full source code of memif is available at:
http://xsel.rocks/p/memif

2. Background and Motivation
In this section, we highlight the importance of user-guided
memory move, identify the inadequacies of existing support,
and present our design considerations.

2.1 A Case for User-guided Memory Move
Memory move, i.e., migration or replication, is a key theme
in managing heterogeneous memory [20, 52, 54]: a faster
memory often has a much lower capacity and cannot hold
the working sets of many data-intensive workloads. For in-
stances, many important HPC applications work on terabytes
of data [49]; typical big data applications consume data at
high rates, e.g., tens of GB per second, with their relative
simple compute [29, 61]. To benefit from heterogeneous
memories, one must frequently move data in and out of fast
memory based on recent or future memory access.

Underutilized off-chip memory bandwidth Fortunately,
the ample main memory bandwidth in modern platforms cre-
ates rich opportunities for “background” memory move in
parallel to foreground computation. Prior work has discov-
ered that scale-out server workloads often utilize less than
10% of off-chip bandwidth [19]; a recent study [29] shows
that offline data analytics has bursty memory demand and
often uses less than 15% of bandwidth on average; online
data analytics often has less than 50% bandwidth utilization
and is described as “good and smooth”.

User’s knowledge is the key The knowledge of program-
mer, compiler, and runtime is proven essential to exploiting
complex memory hierarchies [31, 38]. Compared to trans-
parent approaches that hide memory move from users, a
user-guided approach has three key advantages:

• With a full understanding of program design, users can
guide data move for catering to complex memory access
patterns.

• Unlike transparent management that often reacts based
on recent memory access, users are able to move mem-
ory proactively or even speculatively for optimal perfor-
mance.

• User-guided optimization relieves system software of
continuous monitoring of application memory access,
a mechanism known to incur non-trivial (>10%) runtime
overhead [39].

2.2 Existing OS Support Is Inadequate
Ideally, an OS should empower applications to guide mem-
ory move efficiently and with ease. Unfortunately, such a
service is missing from today’s OS.

Page migration for NUMA As we put heterogeneous
memory under the NUMA abstraction, existing OS support
for migrating pages across NUMA nodes seems a natural fit.
However, the mechanism is far from efficient.

To illustrate the problem, we test page migration built
in the Linux kernel on both ARM and x86 platforms. In
migrating 1500 4KB pages with one mbind() syscall, a
server-class ARM SoC (see Section 6 for details) shows a
throughput of 0.30 GB/sec. On a 2×8 Xeon E5-4650 NUMA
machine, the same test shows a throughput of 0.66 GB/sec;
even when we migrate 1 million pages in one syscall, the
throughput is only 1.41 GB/Sec. All observed throughputs
are below 10% of the corresponding memory bandwidths.

Looking deeper into the Linux kernel, we find migrat-
ing a page is CPU-bound: in addition to copying bytes from
source to destination, CPU performs page table walk, cache
flush, page table update with TLB flush, as well as page al-
location and free operations. For each page these operations
take around 15 µs (of which only 4 µs is for copying bytes)
on our ARM-based test platform. The major inefficiencies
are twofold: first, CPU is used in copying bytes; second,
the kernel mechanism is tailored for synchronous syscalls
and repeats some heavy operations for each page with little
reuse. Using huge pages will improve the throughput, how-
ever, it does not address the inefficiencies and may introduce
new performance problems [21]. We will present more over-
head details in Section 6.

Direct access of DMA engine Ad-hoc support for memory
move often bypasses the kernel infrastructure for efficiency.
Userspace DMA drivers enable applications to directly op-
erate DMA engines with no OS overhead. However, this ap-
proach has three flaws. First, unless there exists IOMMU for
DMA, an application can abuse the unprotected drivers for
accessing almost any data in physical memory. Second, lack-
ing a good way of learning memory move completion, ap-
plications often have to periodically poll the DMA engine.
Third, assigning a DMA engine to a particular application
prevents multiple applications from sharing the engine.

Large carveout memory Another common ad-hoc opti-
mization is to amortize the memory move cost over large
chunks of physically contiguous memory. This is often done
by reserving the chunks during boot time and later linearly
mapping them to application’s address space. Although ef-
fective for certain uses, e.g., embedded multimedia, this ap-
proach leads to memory waste and declines all the benefits
of kernel memory management. Even worse, it often neces-
sitates an in-application page allocator [60] for managing the
large chunks, which fragments the OS features.

2.3 Design considerations
To address these inadequacies, we aim to design an OS
service with the following considerations.

Architectural assumptions Our design depends on one
common architectural feature: a DMA engine supporting
scatter-gather transfer [15], which can move multiple phys-
ical memory regions in a single transfer [23, 58]. We con-
sider two optional features greatly beneficial to performance
and software simplicity: cache coherence between CPU and
DMA engine, which relieves software of expensive cache
maintenance; non-aliasing CPU cache, which allows appli-
cations and kernel to coherently share data structures from
separate address spaces.

Design requirements & goals Our OS service should meet
the following basic requirements: i) asynchronous, it of-
floads byte copy to a DMA engine, freeing CPU for user
workloads, ii) protected, only the kernel code can access the
DMA engine and virtual memory states, and iii) compati-
ble with commodity monolithic OS kernels such as Linux.
Furthermore, it should achieve two performance goals:

• Low overhead. First, the service interface has to be
lightweight. Frequent memory move requests, as dis-
cussed in Section 2.1, motivate us to minimize user/k-
ernel crossings that are known to significantly interfere
with user workloads [55]. Furthermore, the underlying
kernel mechanism should incur minimum cost, as ev-
ery cycle it spends will diminish the benefit from fast
memory. This is challenging: although DMA frees CPU
from copying bytes, the asynchronous interface intro-
duces new, non-trivial costs, in addition to the existing
overhead of physical and virtual memory management.

• Low latency. It is important not to delay application
memory requests, because CPU workloads often do not
see massive parallelism and are less likely to have enough
work to fill the time gap of long wait. Furthermore,
quickly pushing application requests to the DMA en-
gine increases the parallelism between CPU and DMA
and thus better utilizes the memory bandwidth.

Design decisions At first glance, our two goals appear
incompatible: on one hand, conventional wisdom suggests
amortizing overhead by delaying and processing requests
in batches; on the other hand, individual requests should
be serviced with minimum delay. Towards balancing and
meeting the two goals, we make the following decisions:

1. Minimize syscalls: make applications and the kernel
communicate mostly through shared data structures.

2. Eliminate user-level request batching: make kernel threads
proactively “pull” individual requests from application
and “post” notifications back – without user/kernel cross-
ings or synchronization. This departs from prior syscall-

memif library

memif driver

Enhanced DMA engine driver

mem
node

DMA
engine

User
process

Kernel

HW

Lock-free data
structures kthread

Figure 1. An overview of memif

minimizing approaches [24, 53] that make applications
“push” batched requests to the kernel.

3. Exploit the asynchrony of the new interface for optimiz-
ing the kernel mechanism.

3. memif in a Nutshell
Implemented as a kernel-mode driver accompanied by a
small user library (as shown in Figure 1), memif provides
an asynchronous, hardware-accelerated service to replicate
and migrate virtual memory regions. It supports two types
of move:

• Replication implements the semantics of memcpy(): an
application asks for copying data across two virtual mem-
ory regions that are already allocated in its address space.
Replication incurs low OS cost: memif does not need to
manage virtual memory or physical pages, and is indif-
ferent to potential races between CPU and DMA.

• Migration provides the same semantics as page migra-
tion for NUMA: an application specifies one of its vir-
tual memory regions and one destination memory node;
memif replaces the existing backing pages with new
pages allocated from the destination memory; it then fills
the new pages with data from the old pages. memif also
detects and reports any race between CPU and DMA.

The memif interface Simply put, the interface allows an
application to submit move requests and later receives the
completion notifications without blocking. More specifi-
cally, the application first opens a memif device file and
owns the corresponding memif instance. The application
then communicates with the underlying memif driver via
a set of shared, lock-free queues: it submits move requests
through enqueueing and receives completion notifications
through dequeueing. A syscall is only needed when memif’s
kernel worker thread is idle and thus needs a kick-start; the
memif user library, based on its observation of the queue
color, will determine the need for such a syscall and make
the syscall automatically (§4.4).

int memfd = MemifOpen(“/dev/memif0”)
struct mov_req *req;
/* Request to move memory regions */
for (int i = 0; i < 10; i++) {
 req = AllocRequest(memfd);
 /* populate all the fields */
 req->src_base = ...
 ...
 SubmitRequest(req); /* non-blocking */
}

/* Do computation ... */

if (req = RetrieveCompleted()) /* Is any move completed? */
 /* Todo: Consume the memory with compute ... */
 ...
/* No other work, sleep until any move is completed. */
poll(fdset); /* fdset is a set containing memfd. */
...
MemifClose(memfd);

Figure 2. A simple example of using the memif user API

Later, if the application becomes idle, it can call poll()
to sleep while still listening for any notifications from
memif, just like a network server waiting for I/O events.

It is worth noting that multiple application threads, in ac-
cessing memif concurrently, are unable to cause data races.
By design, all operations on data structures of the lock-free
interface are atomic. This leaves no room for data race re-
gardless of the application access patterns.

Execution of the memif driver The memif driver serves
requests one by one and moves memory regions accordingly.
In making a “kick-start” syscall, an application thread en-
ters the kernel to execute the memif driver for just one re-
quest; it exits the kernel as soon as the resultant DMA trans-
fer starts. Once the request is completed, a memif kernel
thread takes charge of serving all the queued requests with-
out userspace involvement. Meanwhile, the application may
continue to submit new requests asynchronously – no syscall
or locking is needed. Upon the completion of each request,
the driver posts a notification by enqueueing the completed
request for the application. After all submitted requests (in-
cluding the new ones submitted asynchronously) are com-
pletely drained, the kernel thread goes back to sleep.

4. The Interface Design
In this section we present the exterior and interior of the
memif interface. We first describe the user API (§4.1), then
dive in the kernel interface design (§4.2 and 4.3), and last
describe how the user API is implemented atop the kernel
interface (§4.4).

4.1 The User API
We next describe the memif user API from a programmer’s
perspective. To make the discussion concrete, we also show
a simple code example in Figure 2.

int MemifOpen(const char *device name);

int MemifClose(int memfd);

flags dest addr or
dest node

source addr page count

next index ABA counter

0 11 12 31

31 16 15 1 0

Staging
queue

Red / Blue

Submission
queue

Completion
queue

Va
lue

Lin

k
(a) Logic view

(b) Physical layout. Numbers indicate
bit offsets. Link is used for queues.

co
lo

r

MOV
REQ metadata

memory mapped pages

… … …

…

Free list

MOV
REQ

Figure 3. The core of the memif kernel interface: lock-free
data structures that are shared between userspace and kernel

Each memif instance exposes a Linux device file. Given a
device file name, the above two functions initialize a memif
instance and clean it up, respectively.

struct mov req *AllocRequest(int memfd);

void FreeRequest(struct mov req *req);

These two functions allocate and free a mov req struc-
ture, respectively. mov req is a hardware-independent repre-
sentation of a move request, which specifies a virtual mem-
ory region consisting of multiple pages in an application’s
address space. Figure 3(b) shows all fields of a mov req.
After a blank mov req is allocated, the programmer is re-
sponsible for populating all the fields in mov req with the
desired parameters.

int SubmitRequest(struct mov req *req);

This function submits a new move request to memif. By
calling it, the caller application is oblivious to whether a
syscall will be made; instead, the memif library will decide
so judiciously. We will discuss the details in Section 4.4. The
function is non-blocking; it returns the error code or 0 on
success.

struct mov req *RetrieveCompleted(void);

This function attempts to retrieve one completion notifi-
cation from memif. If there is no pending notification, the
function returns NULL immediately without blocking.

In addition to the non-blocking retrieval, an application
can wait for memif notifications while sleeping by calling a
POSIX syscall poll(), as demonstrated in Figure 2. Sup-
porting poll() is useful. First, it allows sleep for saving
CPU cycles. Second, poll() is generic: through one invo-
cation, applications can blocking wait for memif notifica-
tions and other types of I/O events at the same time, such as
those of disk and network.

4.2 Kernel Interface
The memif kernel interface, which backs the user API, con-
sists of two components per memif instance:

• One memif device file: just like normal Linux device
files, it supports open(), close(), mmap(), and poll().
In addition, it supports a new ioctl command MOV ONE;

• A set of data structures shared between userspace and
kernel: three queues implemented as singly linked lists
and one free list. All the shared data structures reside
in a set of pinned pages that are first allocated by the
memif driver and then mapped into the application’s ad-
dress space. These data structures are lock-free: they can
be concurrently accessed by application threads and any
kernel contexts without synchronization.

Shared data structures As shown in Figure 3 (b), the in-
ternal layout of the memory-mapped area starts with the
metadata for the list and queues followed by an array of
mov req entries. As shown in Figure 3 (a), the memif ini-
tialization procedure chains all the mov req entries in the
free list through their link fields. Subsequent enqueueing
and dequeueing operations update these links and thus log-
ically move mov reqs among the following queues:

• Staging queue holds the submitted requests that are not
yet known to the kernel.

• Submission queue holds the requests that are known to
the kernel and are currently waiting to be processed.

• Completion queue holds the completed requests posted
back to the application. In practice, we have implemented
the queue as two: one for successful moves and the other
for failed ones; we refer to them as one for brevity.

The new ioctl command, MOV ONE, only does one
thing: entering the kernel, it dequeues a mov req from the
submission queue and executes the memif driver for the re-
quest.

Why lock-free? All the three queues are based on a clas-
sic lock-free queue design [47] (the first queue is augmented
with a red/blue color as will be discussed later). Lock-free
data structures provide a unified, conceptually simple mech-
anism that allows concurrent access to the memif queues. No
single kernel locking mechanism provides this benefit. Syn-
chronization using sleepable locks, e.g., semaphores, pre-
vents the completion queue from being accessed by inter-
rupt handlers for notification delivery. Synchronization us-
ing non-sleepable spinlocks, on the other hand, exposes ker-
nel to lockup hazards: a misbehaving application failing to
release a spinlock will deadlock the kernel.

In theory, any lock-free data structures supporting set

operations including add and remove can be used for the
memif interface. Having considered other lock-free data
structures including singly or doubly linked list [25, 57], we
chose lock-free queue for its simplicity and low overhead.

It is worth noting that the use of lock-free data structures
is uncommon in user/kernel communication: existing work
often makes user and kernel share normal queues (i.e. not
lock-free) [24, 53], since user and kernel only access these
queues synchronously. With the asynchrony of the memif
interface, normal queues no longer work: the integrity of the

shared interface data structures must be guaranteed under
any user/kernel access pattern.

Why a red-blue queue? We further extend the staging
queue to be a novel red-blue lock-free queue: unlike a vanilla
lock-free queue that only guarantees the atomicity of each
queue operation, the new design guarantees the atomicity of
each queue operation together with the access of a queue-
wide flag, i.e. the queue color.

This feature is critical to memif. To minimize latency,
threads from both an application and the kernel share not
only the staging queue but also a key flag, which indicates
which thread is responsible for flushing all the queued re-
quests for execution. While moving requests in/out of the
queue, all the threads also pass around the responsibility of
flushing the queue. To do so, each thread must manipulate
both the queue and the flag exclusively; otherwise a race
condition will occur. This raises non-trivial challenge: were
memif to employ a vanilla lock-free queue and a normal flag,
it would require a lock for protecting the two, breaking lock
freedom and incurring lockups.

The red-blue queue realizes the feature with a novel idea.
It encodes the flag, dubbed “queue color”, in each link inside
the queue; it atomically propagates the flag as the queue
grows. As a result, the flag can be manipulated as part of
an atomic queue operation. Lock freedom is retained.

We will sketch the internals of a red-blue lock-free queue
in Section 4.3 and show its use in Section 4.4.

Safety Concerns Directly sharing data structures between
userspace and kernel naturally raises safety concerns. For-
tunately, the memif interface does not jeopardize kernel’s
integrity. First, the only object references, the link field in
mov req, are indices into the array of mov req, which will
be validated by the memif driver before use. Second, as
discussed above, as applications hold no lock, their use of
memif will never lock up the kernel. Last, one memif device
is owned by one process. Multiple memif devices maintain
separate copies of queues and free lists and are therefore iso-
lated from each other.

However, it is still possible that applications abuse the
memif service for excessive data movement. Such problems
are not introduced by the memif interface and can be pre-
vented by the driver without safety risks.

4.3 Internals of Red-blue Lock-free Queue
As mentioned in Section 4.2, application or kernel may need
exclusive access to both a staging queue and its color. To
avoid introducing a lock, our key idea is to “entangle” color
in the atomic queue operations. We next provide a generic,
memif-agnostic description of how this is implemented.

To provide some background, a classic lock-free queue [47]
is often implemented as a singly linked list. It uses compare-
and-swap (CAS), an atomic CPU instruction, to update the
links between its elements. To enqueue or dequeue, a thread
checkpoints the link to be modified, prepares a new version

of the link on the side, and then tries to “swap in” the new
link with a CAS. Guaranteed by hardware, the swap attempt
will succeed if and only if the checkpoint is still up-to-date;
otherwise, the queue must have just been modified by an-
other concurrent thread, and the whole procedure is retried.

Based on the design, our red-blue lock-free queue en-
codes one color bit in each element link, as shown in Fig-
ure 3 (b). This allows performing a queue operation (i.e., link
update) and setting/getting color with a single CAS. Com-
pared to the classic design, the overhead added by coloring
is negligible. We next overview the queue interface and its
implementation.

color t set color(queue t q, color t new);

This function attempts to change one queue’s color to
new, which, as a rule, will only succeed on an empty queue.
Inside, the function first checks if the queue is empty, i.e.,
whether the head’s next link is NULL. If so, it then follows
the aforementioned procedure to swap in a NULL link encod-
ing the new color. On success, the old color is returned.

color t enqueue(queue t q, element t e);

element t dequeue(queue t head);

A queue’s color is maintained and returned as part of
the enqueueing and dequeueing functions. The enqueueing
function extracts the color from the old tail’s next link
during checkpointing; it then propagates the color to the
new tail’s next link during CAS. On success, it returns the
color to the caller. Since the dequeueing function returns the
dequeued element, the caller can simply extract the color
from the element’s next link.

From a high-level perspective, our red-blue lock-free
queue is a generic design that maintains a queue-wide prop-
erty (not limited to a binary color value) as part of the atomic
queue operations.

4.4 Putting It Together: Implementing the User API
Most memif user functions presented in Section 4.1 are thin
wrappers around the kernel interface: opening or closing the
device file, getting a mov req from the free list or putting
one back, and dequeuing a mov req from the completion
queue. The only non-trivial one is SubmitRequest(), for
which simplified pseudo code is listed and explained below.

1 SubmitRequest(request) {
2 color = enqueue(staging_queue, request);
3 if (color == BLUE) { /* user should flush */
4 flush:
5 while (request = dequeue(staging_queue))
6 enqueue(submission_queue, request);
7 old_color = set_color(staging_queue, RED);
8 if (old_color == -1) /* queue not empty */
9 goto flush;

10 if (old_color == RED)
11 return;
12 ioctl(MOV_ONE);
13 }
14 }

This function first deposits a mov req in the staging
queue (line 2). As described in Section 4.1, the staging queue

has a blue or red color indicating who should flush it: blue for
the application and red for the kernel. If the color is red, the
function does nothing but return, knowing that an active ker-
nel thread will later flush the entire queue including the just
enqueued request; if the color is blue, the function flushes all
mov reqs from the staging queue to the submission queue
(line 4–6). At the end of flushing, the function attempts to
change the the queue’s color from blue to red (line 7). If the
attempt fails because the queue is no longer empty (line 8)
– one another application thread may have just submitted
new requests – flushing is retried. On success, the function
invokes ioctl() to issue a MOV ONE command (line 12).
After the queue color is changed to red, any subsequent re-
quests will accumulate in the staging queue, waiting to be
flushed by the kernel thread.

There is no race among concurrent application threads
attempting to flush the staging queue: only the thread that
successfully changes the queue color from blue to red will
call ioctl(); other threads, in attempting to change the
queue color, will see the color is already red and quit (line
10).

5. The memif Driver
As mentioned in Section 3, the memif driver serves mov req

requests. To break down the challenges faced by the driver,
we list the major operations in fulfilling each mov req in Ta-
ble 1. For these operations, the table shows baseline designs
that are closely modelled after the Linux page migration –
except DMA and notification delivery. In this section, we
discuss key optimizations applied to individual operations
(also summarized in Table 1) and then present a complete
execution workflow with the optimized operations.

5.1 Gang Page Lookup
To move a virtual memory region, the memif driver needs to
locate all the physical page descriptors. Conceptually, given
the virtual address of each page, the driver should walk the
page table to locate the page table entry (PTE) that leads to
the corresponding physical page descriptor. Since all pages
targeted by a request are virtually contiguous, we leverage
the fact that most of their PTEs are adjacent. Thus, only for
the first page in the region, the driver descends “vertically”
from the page table root down to the PTE; for each of the
remaining pages, the driver walks “horizontally” to traverse
neighboring PTEs without starting over from the root.

5.2 Lightweight Race Detection
In migrating each page, the baseline workflow modifies the
user address space twice (in Remap and Release) as summa-
rized in Table 1 and illustrated in Figure 4(a). The implica-
tions are two. First, changing PTE and TLB has significant
direct cost, e.g., up to a couple of µs based on our measure-
ment; in addition, flushing TLB also has indirect cost [2, 55].
Second, since modifying user address space is a heavy ac-
tion, any code trying to do so must first obtain a sleepable

(a) Race prevention

Migration PTE
STOP

Final PTE

Semi-final PTE

“young”

Remap

Release

(b) Race detection

CAS

Old PTE Old
page

Old PTE Old
page

New
page

Final PTE New
page

Figure 4. A comparison of (a) race prevention as in Linux
page migration for NUMA and (b) race detection in memif

lock as required by the Linux kernel. This prevents Release
from being done in non-sleepable contexts such as interrupt
handlers.

In retrospect, modifying user address space in Remap
used to be warranted: the installed migration PTE prevents
races between CPU and DMA by blocking any user thread
attempting to modify pages being migrated. With the legacy
synchronous interface, blocking applications is the only way
to handle race: applications have no other way to learn mi-
gration completion and therefore cannot actively avoid races.

Fortunately, since the memif interface explicitly delivers
completion notifications to applications, the memif driver
can be relieved of race prevention and instead simply per-
forms race detection, therefore skipping installing migration
PTEs. Based on this rationale, we have built the following
mechanism.

Proceed and fail The driver detects races and treats them
as program errors, as shown in Figure 4(b). In Remap, the
driver installs a semi-final PTE, in which all bits are identical
to the final PTE (the one installed by the baseline Release)
except that the “young” bit is set. With the Linux design, the
young bit will be cleared by the kernel automatically when
the page is accessed for the first time or when the page is
migrated. When it comes to Release, the memif driver tries
to clear the young bit: it uses a CAS instruction to swap in
the final PTE in which young bit is cleared as it should be.
The CAS will fail if any code has modified the semi-final
PTE or any page reference has occurred causing its young
bit to be cleared. In such a case, the driver sends a SEGFAULT
signal to the application. On success, no TLB flush is needed
since the semi-final PTE never enters TLB.

Alternative: proceed and recover We have also considered
handling races more transparently at the price of higher com-
plexity and overhead: upon a race, memif aborts the migra-
tion, restores the original mapping, and gracefully notifies
the application of the race. This could be useful in case one
application decides to stop waiting for an outstanding mem-
ory move and demands immediate memory access.

To implement this feature, the driver provides a custom
page fault handler for aborting migration when race is de-

 Baseline Operations Optimized Operations Major Costs

1. Prep
→ R & M For each page: based on the user-provided virtual

address, look up the corresponding physical page
descriptor.

For the whole request: given the virtual address
range, find all physical page descriptors with
gang page lookup.
See Section 5.1.

++Per-request:
 ++Page lookup
--Per-page:
 --Page lookup

2. Remap
→ M

For each page: allocate a new page on the
destination memory.

Replace the page table entry (PTE) with a special
migration PTE, so that any process trying to access
the page will be blocked until the migration ends.
Flush TLB.

For each page: allocate a new page on the
destination memory.

Replace the page table entry (PTE) with one
pointing to the new page. Set the “young” bit in
the PTE. Flush TLB.
See Section 5.2.

Per-page:
Page allocation
Replace PTE
TLB flush

3. DMA/cfg
→ R & M

For the whole request: assemble a scatter-gather list
and pass the list to the DMA engine driver.

The DMA engine driver programs the chain of
transfer descriptors and triggers the transfer.

For the whole request: assemble a scatter-gather
list and pass the list to the DMA engine driver.

The DMA engine driver reuses a chain of
transfer descriptors and triggers the transfer.
See Section 5.3.

Per-request:
Initialize the list

Per-page:
++Reuse descriptor
--Write descriptor

(… DMA transfer …)
4. Release
→ M

For each page: replace the migration PTE with the
final one pointing to the new page. Flush TLB.

Free the old page.

For each page: use a CAS to clear the “young”
bit in the PTE and report any race happened
during the DMA transfer. See Section 5.2.

Free the old page.

Per-page:
++CAS
--Replace PTE
--TLB flush
Page freeing

5. Notify
→ R & M

For the request: enqueue the completed mov_req to the completion queue and wake up any waiting
application threads.

Per-request:
Enqueue notif.

 R: operation needed in replication M: operation needed in migration -- Cost in baseline only ++ Cost in optimized only Time

Table 1. The major operations of the memif driver in serving one move request

tected. Remap installs a special PTE so that any write to a
migrating page will be trapped as a page fault and handled
by the custom fault handler. This handler restores the old
PTE, drops the outstanding DMA transfer, and enqueues the
aborted mov req to notify the application. The CPU’s new
write that causes the race will thus be preserved.

5.3 Minimal Reconfiguration of DMA Engine
Perhaps a bit surprisingly, the overhead of configuring DMA
engine is non-trivial as compared to the saved CPU cycles. A
modern DMA engine often offers sophisticated mechanisms
to copy data. For instance, the TI EDMA3 engine [58] ex-
poses an array of transfer descriptors. Consisting of 12 pa-
rameters, one transfer descriptor commands the engine to
copy a chunk of bytes as if the bytes are organized in a
three-dimensional array. To implement scatter-gather trans-
fers [15], CPU can chain descriptors by writing to a specific
field in each descriptor to indicate the next descriptor that
the engine should execute. According to our knowledge, the
configurable descriptors and chaining interface are popular
in other DMA engines such as Intel’s Crystal Beach 3 [28].

To move a memory region which spans multiple pages,
the DMA engine driver composes a chain of descriptors.
Without assuming IOMMU, DMA requires one descriptor
to cover a physically contiguous area. As a result, the driver
dedicates each descriptor to one page, the largest physically

contiguous memory area that applications are guaranteed to
get.

The major overheads of DMA engine configuration are
thus two: i) calculating the parameters for each descriptor; ii)
writing to each descriptor which is in unbuffered, uncached
I/O memory. It sometimes takes 4-5 µs to configure one
descriptor according to our measurement.

To minimize the first overhead, we have done an obvi-
ous optimization to cache calculated parameters since each
descriptor always copies a page. To minimize the second
overhead, we reuse descriptor chains that have been config-
ured for previous transfers. In order to do so, we enhance the
DMA engine driver so that it maintains the knowledge of ex-
isting descriptor chains. In a simple example, since the en-
hanced driver knows that “starting from descriptor 42, there
exists a chain of 32 descriptors, each configured for a 4KB
transfer”, it can reuse part of or the whole chain in the next
transfer. For each reused descriptor, the driver only needs to
overwrite the source and destination fields, reducing the sec-
ond overhead by 4×.

5.4 Putting It Together: Driver Execution
With the above optimization applied, the refined operations
and their costs are shown in Table 1. Thanks to the lock-
free data structures (§4.2), these operations are performed in
three different kernel contexts to achieve the smallest latency

Time

Staging
queue

App

kernel:syscall
kernel:irq
kernel:thread

DMA engine

blue red

Submit
&Flush

ioctl()

…

No more
MOV_req

… …

idle busy

Submit

45 123 123 4 5
4 5

123

Figure 5. An example execution of memif driver. The num-
bers are referring to the driver operations summarized in Ta-
ble 1. Time on x-axis is not drawn to scale.

possible: the caller’s process, interrupt handlers, and kernel
threads. We next describe the three execution paths in the
memif driver. An example execution timeline is shown in
Figure 5.

Syscall path As mentioned in Section 4.4, an application
invokes ioctl(MOV ONE) to enter the memif driver. Exe-
cuted in the context of the application process, the driver
does operation 1–3 for one queued request. Right after acti-
vating the DMA engine, the execution returns to userspace.

Interrupt path When the DMA engine completes data
copy for a request, an interrupt is fired. The interrupt handler
performs Release (4) and Notif (5) immediately. Note that
this is made possible through our lightweight race detec-
tion described in Section 5.2; otherwise, modifying address
space in Release (4) is forbidden in interrupt handlers as it
may lock up the kernel. Last, the interrupt handler wakes up
a kernel thread.

Kernel thread path Once woken up, the kernel thread is-
sues all queued requests from the submission queue and the
staging queue. Inspired by network interface drivers [48], the
kernel thread switches between the interrupt-driven mode
and polling mode depending on the amount of data to move.
For small requests (less than 512KB in our implementation)
for which completion time is short and predictable, the ker-
nel thread turns off the DMA interrupt and sleeps shortly
before performing Release(4) and Notify(5). This is shown
in Figure 5. Otherwise, the kernel thread leaves the interrupt
on and lets the interrupt handler perform Release and Notify.
Finally, when queues are emptied, the kernel thread colors
the staging queue as blue, indicating that the application is
responsible for flushing the queue from now on.

Why use a kernel thread? As schedulable entities, ker-
nel threads are able to acquire sleepable locks such as
semaphores, thus capable of time-consuming operations
such as Remap(2). More importantly, kernel threads can be
executed on cores other than the ones where data-intensive
application runs [55], shielding the latter from frequent con-
text switches and CPU exceptions, both known costly.

Table 2. A summary of the test platform, the TI KeyStone
II SoC

Hardware Specs
CPU 4x Cortex-A15, each @ 1.2GHz

Memory

Fast: 6 MB on-chip SRAM
Measured bandwidth: 24.0 GB/sec

Slow: 8 GB DDR3 1600MHz
Measured bandwidth: 6.2 GB/sec

DMA
Engine

TI EDMA3: coherent; 6 transfer controllers;
512 entries for transfer descriptors.

Table 3. A summary of the memif source code
 Library Driver DMA Test Total
KSLoC 0.8 3.3 0.8 1.7 6.6

6. Prototype & Evaluation
In this section, we describe our test platform and prototype
(§6.1), present the evaluation methodology (§6.2) and results
(§6.3 – 6.5), and discuss our limitations (§6.7).

6.1 Test Platform & Prototype
We have prototyped memif atop the Texas Instruments Key-
Stone II SoC [59]. A server-class SoC, KeyStone II powers
microservers such as the HP Proliant m800 [26]. As sum-
marized in Table 2, the SoC embraces two types of memory,
both cached. An on-chip controller manages two memories
and implements coherency between CPU and other bus mas-
ters including the DMA engine.

Applying the NUMA abstraction As mentioned in Sec-
tion 1, we have abstracted the heterogeneous memories as
pseudo NUMA nodes. In order to do so, we have ported an
existing ARM NUMA patchset [37] to KeyStone II. One
challenge is the physical address of SRAM is lower than
any DDR bank, luring the kernel to use the capacity-limited
SRAM for booting and then crash due to out of memory.
To prevent this, we have patched the Linux boot memory
allocator so that the SRAM bank only becomes visible af-
ter the booting. By that time, all kernel subsystems and the
userspace, e.g., the numactl utility, can see and use two
NUMA nodes: the CPU cores and the DRAM (slow) are on
the same node, while the SRAM (fast) is on the other node.

Implementing memif Table 3 summarizes the new im-
plementation source code introduced by our memif proto-
type. The user library and driver share the implementation
of lock-free data structures. Based on Linux 3.10, the memif
driver is compiled as a standalone kernel module. Only mi-
nor changes are made to the rest of the kernel, e.g., reverse
memory mapping, to export a handful of internal functions
to the module.

0%

20%

40%

60%

80%

100%

0

20000

40000

60000

80000

100000

120000

1 16 12
8 1 16 12
8

0%

20%

40%

60%

80%

100%

0

1000

2000

3000

4000

5000

1 16 12
8 1 16 12
8

0%

20%

40%

60%

80%

100%

0

400

800

1200

1600

1 16 12
8 1 16 12
8

Ti
m

e
(u

s)

Prep
Remap
DMA/cfg
Copy (CPU)
Copy (DMA)
Release
Notify

4KB Page 64KB Page 2MB Page

C
PU

 U
sa

ge

Linux:migration
memif:migration
memif:replication memif Linux memif Linux memif Linux

Figure 6. The time breakdown (columns; left y-axis) and CPU usage (lines; right y-axis) in fulfilling a single mov req. Each
subfigure is for a different page size as marked on top. Numbers on the x-axis indicate the number of pages in each mov req.

We have applied the DMA enhancement described in
Section 5.3 to EDMA3 on KeyStone II. Because EDMA3
is unfortunately not supported by TI’s official kernel tree,
we have to port a similar driver from TI’s DaVinci SoC. In
bringing up EDMA3, we have also implemented memory-
to-memory transfer for it and added a couple of locks for
thread-safety.

6.2 Methodology
We test whether memif has achieved the goals of low cost
and low latency as set in Section 2. We benchmark memif
replication and migration by moving memory from the slow
node to the fast node, and compare memif migration with
Linux page migration. In addition to testing the default 4KB
page, we further investigate how memif will be impacted
by typical large pages. Given that large page support is not
yet mature on our ARM-based test platform, we emulate the
impact by modifying the kernel so it moves extra bytes while
keeping other operations unchanged. By doing so, we have
slightly overestimated the cost of page table walk as using
large pages often reduces the page table depth by one or two,
which, however, is negligible as compared to the total cost.

6.3 Cost Analysis
As has been shown in Figure 6, memif provides memory
move service at low cost. Compared to the Linux page mi-
gration (labelled as “Linux”), memif i) moves the same
amount of pages with much lower CPU usage and ii) does
so in much shorter time for most cases.

By comparing the three subfigures for different page
granularities, we can see how memif gains the edge. When
small (4KB) pages are in use, the overheads of managing
virtual memory and physical pages are the majority. memif
manages to offset the overhead with its interface and mech-
anism optimizations described in Section 4 and 5; memif
loses its advantage over Linux only in the extreme case
where each request only targets one page. When page size

1
2
3
4
5
6
7
8

0 500 1000 1500 2000C
om

pl
et

ed
 R

eq
ue

st

Elapsed Time (us)

memif
Linux/1
Linux/4
Linux/8

Figure 7. The latency in completing a sequence of eight mi-
gration requests, each covering sixteen 4KB pages. Num-
bers in legend indicate the count of requests batched in each
syscall.

becomes medium (64KB) or large (2MB), byte copy cost
starts to dominate and the DMA benefit gradually eclipses
every other cost, giving memif a clear win.

It is worth noting that the time breakdown in Figure 6 is
not always accurate. Since memif is asynchronous, its oper-
ations do not always have counterparts in the Linux page mi-
gration code. In such cases, we identify rough equivalences
with best effort.

6.4 Request Latency
In continuously serving requests, the asynchronous interface
of memif incurs minimum latency at the cost of only one
user/kernel crossing. To demonstrate this, we write an appli-
cation to submit a sequence of eight requests (each targeting
16 pages) to memif; in comparison, we use a second appli-
cation to perform the same task by using NUMA migration
syscalls, and vary the number of requests batched in each
syscall from one, to four, and to eight. As shown in Figure 7,
the memif-based application receives each notification soon
after the corresponding request is completed. Through the
course, the application only makes one syscall – ioctl()

0

2000

4000

6000

1 16 128 1 16 128 1 16 128

T
hr

ou
gh

pu
t (

M
B

/s
) Linux:migration

memif:migration
memif:replication

4KB Page 64KB Page 2MB Page

Figure 8. The memory move throughputs across different
page granularities. Numbers on x-axis indicate the number
of pages in each move request.

Table 4. The throughputs of streaming workloads on top of
a mini runtime that uses memif. Numbers are in MB/Sec.

 StreamCluster.pgain STREAM.triad STREAM.add
Linux 1440.1 2384.1 2390.1
Memif 1778.4 (+23.5%) 3184.4 (+33.6%) 3186.9 (+33.3%)

for the first request. In contrast, the second application is
unable to reduce latency and overhead at the same time: it
either has to send each request in a separate syscall to favor
latency and suffers from high syscall overhead, or it has to
batch multiple requests in one syscall and thus suffers from
high latency.

6.5 Throughput
Thanks to its low cost, memif is able to achieve a signifi-
cantly higher throughput in memory move. We compare an
application that streams migration requests to memif with
migspeed, a Linux NUMA utility released with the stan-
dard numactl library. As shown in Figure 8, except for the
extreme case where each request covers only one 4KB page
(the leftmost columns), the memif-based application outper-
forms migspeed by at least 40% (small pages) and up to
3× (large pages). The throughput of memif replication is
even higher as compared to the memif migration: the sim-
pler semantics of replication eliminates the need for virtual
memory management.

6.6 Case study: A Mini Runtime for Streaming
Workloads

To study how memif could be used by real applications,
we craft a mini runtime library that uses memif for paral-
lel streaming workloads. The runtime is based on a simple
idea: using the fast memory as an array of prefetch buffers
and managing outstanding moves just like asynchronous I/O
requests. As soon as one application starts, the runtime fills
all buffers by replicating data from the slow memory asyn-
chronously. During execution, once a buffer is ready, the run-
time invokes the workload’s compute function to consume
the buffer with all available CPU cores; immediately after

any buffer is consumed, the runtime requests to fill the buffer
with fresh data again. If all prefetched data are consumed
when memory move is still in flight, the runtime invokes
compute function to consume data in the slow memory. We
implement the runtime with around 400 SLoC.

We have ported three compute kernels from two well-
known benchmarks, STREAM [43] and StreamCluster [6].
The throughputs measured on our test platform are shown
in Table 4. Our experience suggests that i) memif is prac-
tical and easy to use and ii) a synergy between memif and
runtime/compiler offers a promising framework to boost ap-
plication performance.

6.7 Limitation
Memory move at fine granularity Despite the great effi-
ciency improvement over the state of the art, the cost of
memif is still non-trivial when it moves small memory re-
gions – a few to tens of small pages, as has been shown in
Figure 6. This is a fundamental limitation rooted in our basic
design requirements (§2.3): user/kernel crossings cannot be
completely eliminated since virtual memory mappings and
DMA engine have to be protected by the kernel; the man-
agement of virtual and physical memory cannot be made free
due to their software cost. As the granularity of memory re-
gion shrinks, all these are emerging as the major cost.

Without an overhaul of the hardware/software stack, user-
guided approaches may never be as efficient as transpar-
ent, hardware-only approaches for very fine-grained mem-
ory move, e.g., at 2 KB [54]. Yet, to data-intensive work-
loads with large working sets, moving memory at a medium
(hundreds of KB) or large (multiple MB) granularity creates
a highly valuable balance between efficiency and flexibility.

Platform limitations In testing a variety of data-intensive
applications, e.g., wordcount [61] and psearchy [9], we find
many of them see little performance gain from memif. Our
investigation shows the causes as two limitations of the Key-
Stone II platform. First, the 6 MB fast memory is not signif-
icantly larger than the 1 MB per-core last-level cache. As a
result, applications whose working sets fit in the fast mem-
ory are also likely cache-friendly. Second, as applications
can only use 4 KB pages, memif has to move memory at a
relative high cost as discussed above.

We expect the limitations to disappear from emerging
platforms as large fast memory and medium/large pages be-
come pervasive. For instance, fast memory is expected to be
as large as 1/8 of the main memory [45]. With them, memif
will substantially benefit a much wider range of applications.

Implementation limitations As a research prototype, the
current memif cannot automatically swap out fast memory;
it can only move anonymous pages but not pages backed by
files; its support for moving pages shared among processes is
primitive. Furthermore, although by design memif is capable
of serving multiple concurrent applications, we have not
evaluated the feature. Down the road, we plan to coevolve

the memif prototype with emerging heterogeneous memory
hardware and examine the implementation more thoroughly.

7. Related Work
Heterogeneous Memory Architecture Memory hetero-
geneity is common. Small on-chip SRAM, often known as
scratchpad memory, is widely used in embedded systems for
its low power and high predictability [4]. However, ranging
from tens of KB [27] to a few hundreds of KB [42], it is too
limited for today’s data-intensive workloads. Such small ca-
pacities often warrant pure user-level memory management
via compilers [18, 44, 56] or runtime [3]. Lacking kernel
support, these solutions are unsafe in multiprogrammed en-
vironments.

GPGPU often embraces a variety of memory types in
one memory hierarchy, making proper placement of pro-
gram data critical to good performance. Unlike memif, most
software work on GPU memory [13, 36] focuses on static
data placement rather than dynamic data move.

Memory move Memory move is a key facility in manag-
ing complex memory hierarchies. Most software approaches
move memory without application’s awareness. Treating
SRAM as the main memory and DRAM as a paging de-
vice, RAMPage [41] transparently copies data between the
two. Targeting heterogeneous memory, Meswani et al. pro-
pose a hardware counter that assists OS to track memory
hotness and to migrate pages accordingly [45]. Memory
move is also widely used for NUMA. To increase threads
and data affinity, kMAF [17] monitors memory access by
injecting page faults and migrates pages dynamically across
NUMA nodes. To alleviate memory traffic congestion, Car-
refour [16] dynamically replicates pages among NUMA
nodes. Shoal [31] transparently replicates program arrays
among NUMA nodes using DMA. In moving memory, most
of the prior work relies on Linux page migration which we
have shown as inefficient. Unlike any of them, memif ex-
poses memory move as an OS service.

A few studies improve the mechanism of memory move.
Goglin et al. [22] augment Linux page migration with a lazy
option, migrating a page upon its first access on the new
memory node. Compared to memif, they defer migration
without addressing the major inefficiency. Bock et al. [8]
propose a new hardware feature for pinning pages in CPU
cache so that the pages remain accessible while being mi-
grated. Compared to memif, they do not reduce the OS over-
head of migration. Lepers et al. [35] speed up Linux page
migration by mainly reducing the use of locks. Compared to
memif, they freeze applications during migration, and do not
exploit DMA for byte copy.

For heterogeneous memory, memif opens the door to a
classic approach – codesigning task scheduling and data
move, as has been applied to CPU cache [14] and GPU [30].

User’s knowledge User’s knowledge has been long known
important in managing complex memory hierarchies. For

CPU cache, software prefetching [11] is a classic tech-
nique to hide latency. Targeting heterogeneous memories,
memkind [12] is a user-level heap manager that exposes
a variety of memory properties to applications. Similarly,
TLM malloc [46] allows programmers to allocate buffers
on fast or slow memory under the guidance of profiling.
Pena et al. [50] propose a profiler for optimally placing
program objects in heterogeneous memories. NUMA sys-
tems also see rich support for compiler [10, 51] or pro-
grammer [32, 38, 39] to guide page replication or migration.
These programming abstractions and profiling techniques
are complementary to memif and can be retrofitted to guide
memory move.

Efficient user/kernel interface High-performance kernel
subsystems, such as GPU driver and network stack [24, 53],
often directly share buffers with userspace. To use their ser-
vices, applications push batched requests to kernel using
syscall, thus removing the need for explicit synchronization.
This is reasonable in handling a stable stream of requests,
e.g. in packet I/O applications. The kernel thread in memif
is inspired by FlexSC [55], in which all syscalls are greed-
ily deferred until the caller process becomes idle and then get
executed in dedicated kernel threads. Similar to them, memif
minimizes the use of syscalls; unlike them, memif mini-
mizes the latency in serving memory move requests, as has
been discussed in Section 2. Thus, memif eliminates user-
level batching and enables user and kernel to asynchronously
access the shared data structures in the interface.

Event delivery mechanisms in modern OSes, such as
epoll [5] and kqueue [34], hold pending notifications in
kernel buffers. Since the buffers are invisible to userspace,
applications have to use syscalls to retrieve the notifications.
Unlike them, the memif driver delivers notifications to ap-
plications asynchronously without requiring any syscall.

8. Conclusions
We present memif, a lightweight OS service for moving
memory regions across heterogeneous memories. memif
is asynchronous, hardware-accelerated, and safe to use.
memif has achieved low latency and low overhead through
a lightweight interface built around a set of shared lock-free
data structures and a suite of key optimizations for its ker-
nel mechanisms. Through a prototype atop heterogeneous
memory hardware, we have demonstrated that memif en-
ables applications to leverage their knowledge in exploiting
heterogeneous memories with ease.

Acknowledgments
The authors thank Texas Instruments for donating the Key-
stone II evaluation modules and the anonymous reviewers
for their useful feedback.

References
[1] S. Anthony. Intel unveils 72-core x86 knights landing cpu for

exascale supercomputing. ExtremeTech, 2013.

[2] ARM. ARM architecture reference manual: Armv7-a and
armv7-r edition, 2014.

[3] J. Balart, M. Gonzalez, X. Martorell, E. Ayguade, Z. Sura,
T. Chen, T. Zhang, K. Obrien, and K. Obrien. A novel asyn-
chronous software cache implementation for the cell-be pro-
cessor. In Languages and Compilers for Parallel Computing,
pages 125–140. Springer, 2008.

[4] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and
P. Marwedel. Scratchpad memory: Design alternative for
cache on-chip memory in embedded systems. In Proceedings
of the Tenth International Symposium on Hardware/Software
Codesign, pages 73–78, 2002.

[5] G. Banga, J. C. Mogul, and P. Druschel. A scalable and ex-
plicit event delivery mechanism for unix. In Proceedings of
the Annual Conference on USENIX Annual Technical Confer-
ence, pages 19–19, 1999.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec bench-
mark suite: Characterization and architectural implications. In
Proceedings of the 17th International Conference on Paral-
lel Architectures and Compilation Techniques, pages 72–81,
2008.

[7] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang,
G. Loh, D. McCauley, P. Morrow, D. Nelson, D. Pantuso,
P. Reed, J. Rupley, S. Shankar, J. Shen, and C. Webb. Die
stacking (3d) microarchitecture. In Microarchitecture, 2006.
MICRO-39. 39th Annual IEEE/ACM International Sympo-
sium on, pages 469–479, Dec 2006.

[8] S. Bock, B. R. Childers, R. Melhem, and D. Mossé. Con-
current page migration for mobile systems with os-managed
hybrid memory. In Proceedings of the 11th ACM Conference
on Computing Frontiers, pages 31:1–31:10, 2014.

[9] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An analysis of linux
scalability to many cores. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementa-
tion, pages 1–8, 2010.

[10] F. Broquedis, N. Furmento, B. Goglin, P.-A. Wacrenier, and
R. Namyst. ForestGOMP: An efficient OpenMP environment
for NUMA architectures. Intl. Journal of Parallel Program-
ming, 38(5-6):418–439, 2010.

[11] D. Callahan, K. Kennedy, and A. Porterfield. Software
prefetching. SIGOPS Oper. Syst. Rev., 25(Special Issue):40–
52, Apr. 1991.

[12] C. Cantalupo, V. Venkatesan, J. R. Hammond, K. Czurylo, and
S. Hammond. User extensible heap manager for heteroge-
neous memory platforms and mixed memory policies. Archi-
tecture document, 2015.

[13] G. Chen, B. Wu, D. Li, and X. Shen. Porple: An extensible
optimizer for portable data placement on gpu. In Proceedings
of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 88–100, 2014.

[14] D. Chiou, S. Devadas, J. Jacobs, P. Jain, V. Lee, E. Pe-
serico, P. Portante, L. Rudolph, G. E. Suh, and D. Willenson.

Scheduler-based prefetching for multilevel memories. Lab.
Comput. Sci., MIT, Boston, MA, Group Memo, 444, 2001.

[15] J. Corbet. The chained scatterlist api. https://lwn.net/
Articles/256368/, 2007.

[16] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize,
B. Lepers, V. Quema, and M. Roth. Traffic management:
A holistic approach to memory placement on numa systems.
In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 381–394, 2013.

[17] M. Diener, E. H. Cruz, P. O. Navaux, A. Busse, and H.-U.
Heiß. kmaf: Automatic kernel-level management of thread
and data affinity. In Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation, pages
277–288, 2014.

[18] A. Dominguez, S. Udayakumaran, and R. Barua. Heap data
allocation to scratch-pad memory in embedded systems. Jour-
nal of Embedded Computing, 1(4):521–540, 2005.

[19] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi. Clearing the clouds: A study of emerging scale-
out workloads on modern hardware. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages & Oper-
ating Systems (ASPLOS), pages 37–48, 2012.

[20] Y. Gao, F. Zhang, and J. Bakos. Sparse matrix-vector multi-
ply on the keystone ii digital signal processor. In High Perfor-
mance Extreme Computing Conference (HPEC), 2014 IEEE,
pages 1–6, Sept 2014.

[21] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova,
and V. Quéma. Large pages may be harmful on numa systems.
In 2014 USENIX Annual Technical Conference (USENIX ATC
14), pages 231–242, June 2014.

[22] B. Goglin and N. Furmento. Enabling high-performance
memory migration for multithreaded applications on linux. In
Parallel Distributed Processing, 2009. IPDPS 2009. IEEE In-
ternational Symposium on, pages 1–9, May 2009.

[23] P. Hammarlund, R. Kumar, R. B. Osborne, R. Rajwar, R. Sing-
hal, R. D’Sa, R. Chappell, S. Kaushik, S. Chennupaty, S. Jour-
dan, S. Gunther, T. Piazza, and T. Burton. Haswell: The
fourth-generation intel core processor. IEEE Micro, (2):6–20,
2014.

[24] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
Megapipe: A new programming interface for scalable network
i/o. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12),
pages 135–148, 2012.

[25] T. L. Harris. A pragmatic implementation of non-blocking
linked-lists. In Proceedings of the 15th International Confer-
ence on Distributed Computing, pages 300–314, 2001.

[26] HP. Data sheet: Hp proliant m800 server cartridge, 2014.

[27] Intel. Product brief: Intel ixp425 network processor.
ftp://download.intel.com/design/network/
ProdBrf/27905105.pdf, 2006.

[28] Intel. Intel xeon processor e5-1600/e5-2600/e5-4600 v2 prod-
uct families, 2014.

https://lwn.net/Articles/256368/
https://lwn.net/Articles/256368/
ftp://download.intel.com/design/network/ProdBrf/27905105.pdf
ftp://download.intel.com/design/network/ProdBrf/27905105.pdf

[29] T. Jiang, Q. Zhang, R. Hou, L. Chai, S. Mckee, Z. Jia, and
N. Sun. Understanding the behavior of in-memory comput-
ing workloads. In Workload Characterization (IISWC), 2014
IEEE International Symposium on, pages 22–30, Oct 2014.

[30] A. Jog, E. Bolotin, Z. Guz, M. Parker, S. W. Keckler, M. T.
Kandemir, and C. R. Das. Application-aware memory sys-
tem for fair and efficient execution of concurrent gpgpu ap-
plications. In Proceedings of Workshop on General Purpose
Processing Using GPUs, pages 1:1–1:8, 2014.

[31] S. Kaestle, R. Achermann, T. Roscoe, and T. Harris. Shoal:
Smart allocation and replication of memory for parallel pro-
grams. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15), pages 263–276, July 2015.

[32] R. Lachaize, B. Lepers, and V. Quéma. Memprof: A memory
profiler for numa multicore systems. In Proc. of the 2012
USENIX Annual Technical Conference (USENIX ATC 12),
pages 53–64, 2012.

[33] C. Lameter. Local and remote memory: Memory in a lin-
ux/numa system. In Linux Symposium, 2006.

[34] J. Lemon. Kqueue-a generic and scalable event notification
facility. In USENIX Annual Technical Conference, FREENIX
Track, pages 141–153, 2001.

[35] B. Lepers, V. Quema, and A. Fedorova. Thread and memory
placement on numa systems: Asymmetry matters. In 2015
USENIX Annual Technical Conference (USENIX ATC 15),
pages 277–289, July 2015.

[36] C. Li, Y. Yang, Z. Lin, and H. Zhou. Automatic data place-
ment into gpu on-chip memory resources. In Code Genera-
tion and Optimization (CGO), 2015 IEEE/ACM International
Symposium on, pages 23–33, Feb 2015.

[37] Linaro. Numa support for arm. https://wiki.linaro.
org/LEG/Engineering/Kernel/NUMA, 2013.

[38] X. Liu and J. Mellor-Crummey. A tool to analyze the perfor-
mance of multithreaded programs on NUMA architectures. In
Proceedings of the 19th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages 259–272,
2014.

[39] X. Liu and J. M. Mellor-Crummey. A data-centric profiler for
parallel programs. In Proc. of the 2013 ACM/IEEE Confer-
ence on Supercomputing, 2013.

[40] G. H. Loh and M. D. Hill. Efficiently enabling conventional
block sizes for very large die-stacked dram caches. In Pro-
ceedings of the 44th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 454–464, 2011.

[41] P. Machanick, P. Salverda, and L. Pompe. Hardware-software
trade-offs in a direct rambus implementation of the rampage
memory hierarchy. In Proceedings of the Eighth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 105–114, 1998.

[42] T. Maeurer and D. Shippy. Introduction to the cell mul-
tiprocessor. IBM journal of Research and Development,
49(4):589–604, 2005.

[43] J. D. McCalpin. Memory bandwidth and machine balance in
current high performance computers. IEEE Computer Soci-
ety Technical Committee on Computer Architecture (TCCA)
Newsletter, pages 19–25, Dec. 1995.

[44] R. McIlroy, P. Dickman, and J. Sventek. Efficient dynamic
heap allocation of scratch-pad memory. In Proceedings of the
7th International Symposium on Memory Management, pages
31–40, 2008.

[45] M. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ig-
natowski, and G. Loh. Heterogeneous memory architec-
tures: A hw/sw approach for mixing die-stacked and off-
package memories. In High Performance Computer Architec-
ture (HPCA), 2015 IEEE 21st International Symposium on,
pages 126–136, Feb 2015.

[46] M. Meswani, G. Loh, S. Blagodurov, D. Roberts, J. Slice,
and M. Ignatowski. Toward efficient programmer-managed
two-level memory hierarchies in exascale computers. In
Hardware-Software Co-Design for High Performance Com-
puting (Co-HPC), 2014, pages 9–16, Nov 2014.

[47] M. M. Michael and M. L. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared mem-
ory multiprocessors. J. Parallel Distrib. Comput., 51(1):1–26,
May 1998.

[48] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive
livelock in an interrupt-driven kernel. ACM Trans. Comput.
Syst., 15(3):217–252, Aug. 1997.

[49] D. D. Neteworks. Ddn solution brief – accelerate
seismic processing. http://www.ddn.com/pdfs/
SeismicProcessing_SolutionBrief.pdf, 2013.

[50] A. Pena and P. Balaji. Toward the efficient use of multiple ex-
plicitly managed memory subsystems. In Cluster Computing
(CLUSTER), 2014 IEEE International Conference on, pages
123–131, Sept 2014.

[51] G. Piccoli, H. N. Santos, R. E. Rodrigues, C. Pousa, E. Borin,
and F. M. Quintão Pereira. Compiler support for selective
page migration in numa architectures. In Proceedings of the
23rd International Conference on Parallel Architectures and
Compilation, pages 369–380, 2014.

[52] L. E. Ramos, E. Gorbatov, and R. Bianchini. Page placement
in hybrid memory systems. In Proceedings of the Interna-
tional Conference on Supercomputing, pages 85–95, 2011.

[53] L. Rizzo. netmap: A novel framework for fast packet i/o. In
USENIX Annual Technical Conference, pages 101–112, 2012.

[54] J. Sim, A. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim.
Transparent hardware management of stacked dram as part of
memory. In Microarchitecture (MICRO), 2014 47th Annual
IEEE/ACM International Symposium on, pages 13–24, Dec
2014.

[55] L. Soares and M. Stumm. Flexsc: Flexible system call
scheduling with exception-less system calls. In Proc. USENIX
Conf. Operating Systems Design and Implementation (OSDI),
pages 1–8, 2010.

[56] S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel. Assign-
ing program and data objects to scratchpad for energy reduc-
tion. In Design, Automation and Test in Europe Conference
and Exhibition, 2002. Proceedings, pages 409–415, 2002.

[57] H. Sundell and P. Tsigas. Lock-free and practical dou-
bly linked list-based deques using single-word compare-and-
swap. In Principles of Distributed Systems, volume 3544 of

https://wiki.linaro.org/LEG/Engineering/Kernel/NUMA
https://wiki.linaro.org/LEG/Engineering/Kernel/NUMA
http://www.ddn.com/pdfs/SeismicProcessing_SolutionBrief.pdf
http://www.ddn.com/pdfs/SeismicProcessing_SolutionBrief.pdf

Lecture Notes in Computer Science, pages 240–255. Springer
Berlin Heidelberg, 2005.

[58] Texas Instruments. Enhanced dma (edma3) controller. litera-
ture no.: Spruel2b, 2009.

[59] Texas Instruments. Multicore DSP+ARM KeyStone II
System-on-Chip (SoC), 2013.

[60] Texas Instruments. Cmem overview. http:
//processors.wiki.ti.com/index.php/CMEM_
Overview, 2014.

[61] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao,
Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li,
and B. Qiu. Bigdatabench: A big data benchmark suite from
internet services. In High Performance Computer Architecture
(HPCA), 2014 IEEE 20th International Symposium on, pages
488–499, Feb 2014.

http://processors.wiki.ti.com/index.php/CMEM_Overview
http://processors.wiki.ti.com/index.php/CMEM_Overview
http://processors.wiki.ti.com/index.php/CMEM_Overview

	Introduction
	Background and Motivation
	A Case for User-guided Memory Move
	Existing OS Support Is Inadequate
	Design considerations

	memif in a Nutshell
	The Interface Design
	The User API
	Kernel Interface
	Internals of Red-blue Lock-free Queue
	Putting It Together: Implementing the User API

	The memif Driver
	Gang Page Lookup
	Lightweight Race Detection
	Minimal Reconfiguration of DMA Engine
	Putting It Together: Driver Execution

	Prototype & Evaluation
	Test Platform & Prototype
	Methodology
	Cost Analysis
	Request Latency
	Throughput
	Case study: A Mini Runtime for Streaming Workloads
	Limitation

	Related Work
	Conclusions

