
Power Sandbox: Power Awareness Redefined
Liwei Guo∗
Purdue ECE

Tiantu Xu∗
Purdue ECE

Mengwei Xu
Peking University

Xuanzhe Liu
Peking University

Felix Xiaozhu Lin
Purdue ECE

ABSTRACT
Many apps benefit from knowing their power consumption and
adapting their behaviors on the fly. To offer apps power knowledge
at run time, an OS often meters system power and divides it among
apps. Since the impacts of concurrent apps on system power are
entangled, this approach not only makes it difficult to reason about
power but also results in power side channels, a serious vulnerabil-
ity.

To this end, we introduce a new OS principal called power sand-
box, which enables one app to observe the fine-grained power
consumption of itself running in its vertical slice of the hardware/-
software stack. The observed power is insulated from the impacts
of other apps. Our contribution is a set of lightweight kernel exten-
sions that simultaneously i) enforce the power sandbox boundaries
and ii) confine entailed performance loss to the sandboxed apps.
Our experiences on two embedded platforms show that power sand-
boxes simplify reasoning about power, maintain fairness among
apps, and minimize power side channels, thus facilitating construc-
tion of power-aware apps.

CCS CONCEPTS
• Computer systems organization → Embedded systems; •
Software and its engineering → Operating systems; Power
management;

KEYWORDS
Operating systems; Embedded systems; Energy efficiency; Power
awareness

ACM Reference Format:
Liwei Guo, Tiantu Xu, Mengwei Xu, Xuanzhe Liu, and Felix Xiaozhu Lin.
2018. Power Sandbox: Power Awareness Redefined. In EuroSys ’18: Thirteenth
EuroSys Conference 2018, April 23–26, 2018, Porto, Portugal. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3190508.3190533

∗Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’18, April 23–26, 2018, Porto, Portugal
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00
https://doi.org/10.1145/3190508.3190533

HW
Power

(a) State of the Art (b) Power Sandbox

OS Accounting

Apps
Observe

Power
Sandbox

Insulation of
power impacts

Power
Metering Metering

Observe

Figure 1: An overview of this work

1 INTRODUCTION
The quest for app power awareness1 has lasted over a decade [28]:
an app, as one or a group of user processes, demands to observe
its power consumption online, in order to adapt its behaviors ac-
cordingly to lower power or higher efficiency. Traditionally, an
operating system (OS) supports app power awareness through a
two-step approach at run time as shown in Figure 1(a). First, the
OS meters system power by either consulting a power model [25,
26, 59, 70, 71, 81, 96, 97] or performing in situ direct measure-
ment [11, 28, 29, 79, 84]. Second, it divides the metered power
into per-app shares, based on certain heuristics chosen at the OS
development time.

Despite recent advances in fine-grained power metering [11, 79],
the above approach suffers from two key inadequacies.

(1) Reasoning difficulty: it fails to provide power observations
that are easy for apps to reason about and act upon.

(2) Security vulnerability: it creates power side channels [10],
allowing attackers to learn a victim app’s security-sensitive behav-
iors.

The latter inadequacy is already shown by prior work [37, 58,
95] and will be further demonstrated in this paper (§2.5): from its
observed GPU power, an attacker app can infer what website a co-
running victim browser is visiting. Such inference’s success rate is
6× higher than random guess. Fine-grained power metering further
exacerbates this vulnerability.

In summary, the two inadequacies are becoming the major ob-
stacles towards app power awareness.

Our key observation is that the metered system power contains
entangled impacts from concurrent apps, and the impacts cannot
1Power awareness and energy awareness are often used interchangeably in prior work.
To highlight power knowledge at fine temporal granularity, we use power awareness
in this paper unless stated otherwise.

https://doi.org/10.1145/3190508.3190533
https://doi.org/10.1145/3190508.3190533

be separated cleanly. Such power entanglement is rooted in work-
conserving OSs that aggressively multiplex apps on hardware re-
sources. Unfortunately, the existing approach to app power aware-
ness copes with power entanglement reactively at best without
attempting to eliminate it.

To this end, we advocate a fresh perspective on OS support
for power awareness, as illustrated in Figure 1(b). First, the OS
supports any app to observe the power of the app running in its
vertical environment (i.e., its vertical slice of the software/hardware
stack) and hence prompts the app to suit the vertical environment.
Furthermore, the OS insulates the app’s power observation from
the impacts of other apps.

Following this perspective, we propose a new abstraction called
power sandbox, or psbox for short. A psbox allows the enclosed
app to observe the collective power of the app itself and its vertical
environment at fine temporal granularities. In this observation,
the only possible contributions of concurrent apps are periods of
idle power. The OS enforces psbox as the only way for apps to
observe power: one app may enter or leave its psbox freely, but
is only allowed to observe power when it is in the psbox. Free of
power entanglement, the resultant power observation is not only
amenable to reasoning but also minimizing power side channels.
We stress that power sandbox insulates app power impacts but does
not isolate their executions: all apps, inside a psbox or not, share
the same system image as usual.

To support psbox, we have addressed two primary challenges:
Enforcing psbox boundaries We make the OS kernel respect
psbox boundaries in resource multiplexing. The kernel does so
with two extensions: i) it grants a psbox exclusive use of resource
partitions at fine spatial or temporal granularities, called resource
balloons; it meters and reports the power of resource balloons; ii) it
virtualizes hardware power states for every single psbox.
Confining performance loss to sandboxed apps As other
mechanisms for online resource monitoring [1, 46], psbox comes
with runtime costs, which is mainly due to lost sharing opportu-
nities. In response, a core mechanism of psbox is to confine the
costs to the sandboxed apps and therefore ensures performance
fairness among all the apps, regardless of their usage of psbox.
This mechanism is both powerful and critical: assuming two apps
co-running on a multicore equally share the CPU time and one
app enters its psbox, the unsandboxed app continues to enjoy its
original share normally – half of the total CPU time, despite the
reduction in combined CPU utilization.

The OS kernel confines performance loss with two techniques.
It tracks the lost sharing opportunities and fully charges the loss to
the sandboxed app, disadvantaging this app in future resource com-
petitions. It encapsulates resource balloons as normal scheduling
entities and therefore reuses most of the existing kernel infrastruc-
ture for scheduling.

We intend psbox to be a “pay-as-you-go” service for apps: apps
use psbox to periodically sample power or to selectively monitor
power of key execution phases. Based on their power observation,
apps make power-aware decisions, which remain valid even after
they leave psbox. In most of their lifetime, they run outside of
psbox without overhead.

Atop a recent Linux kernel and two embedded platforms, we
implement psbox for a variety of major hardware components,

including CPU, GPU, DSP, and WiFi interface. psbox keeps an
app’s power observations highly consistent even when the app co-
runs with other different apps. Across these runs, the app’s energy,
as observed by the app itself, differs by less than 5%; by contrast,
energy shares reported by a prior approach differ by up to 60%.
In a benchmark of three co-running computer vision apps, the
use of psbox by one app leads to 10% total throughput loss. The
confinement of performance loss is robust: in a test with extremely
high resource contention, despite the throughput of the sandboxed
app dropping by 4×, the other co-running app only experiences 1%
throughput loss.

Based on psbox, we present an end-to-end use case. We build
a virtual reality app (in 2K SLoC) that periodically observes its
power and dynamically trades its fidelity level for lower power,
demonstrating how psbox facilitates the construction of power-
aware apps.

This paper has made the following contributions:
• We present an analysis of existing approaches to app power
awareness, demonstrate the inadequacies, and identify the
cause as power entanglement. In response, we present a
novel OS principal called power sandbox (psbox) that sup-
ports an app to observe the power of itself and its vertical
environment.
• We enforce psbox and confine its performance cost to the
sandboxed app. We do so through a suite of techniques:
resource ballooning, power state virtualization, and track-
ing/charging the lost sharing opportunities.
• On top of a recent Linux kernel, we implement psbox for
CPU, GPU, DSP, and WiFi interface. Our evaluation shows
that psbox reliably insulates power impacts, incurs minor
cost, maintains fairness, and facilitates the construction of
power-aware apps.

The full source code of psbox is available at:
http://xsel.rocks/p/psbox

2 A CASE FOR A NEW OS PRINCIPAL
We next analyze the design space of supporting app power aware-
ness. First, we distill the essential power knowledge needed by apps
(§2.1). Next, we examine the classic two-step approach, showing
that while metering is becoming accurate and efficient (§2.2), ac-
counting encounters a fundamental difficulty which we dub power
entanglement (§2.3 – §2.5). To address the difficulty, we advocate
eliminating power entanglement and empowering apps to observe
exactly what they need to know. This motivates a new OS principal
(§2.6).

2.1 Power awareness: what matters to apps?
We first examine what power knowledge has been required by exist-
ing app adaptation strategies. Figure 2 illustrates the key concepts
of app power-aware adaptation.

App cares about its own power impact By design, most
adaptation strategies focus on optimizing one app’s behaviors. By
exploiting the app’s domain knowledge, these strategies reduce the
app’s power impact, which will be translated to a similar reduction
in the system power or energy. Often, apps demand to know their

power impacts at fine temporal granularities in order to map the
power to short-lived software activities [63, 70, 79, 81].

Vertical

Environment

Adapts to

Impacts

System

Power

App

Action
Prompts

Figure 2: Concepts in app
power-aware adaptation

This app-centered approach
is extensively taken by prior
work: an app optimizes its own
code execution efficiency [17, 18,
63, 79, 101], reduces the power
impact of its own I/O activi-
ties [23, 65, 78], or does both si-
multaneously [7, 14].

App adapts to suit its ver-
tical environment As illus-
trated in Figure 2, a vertical
environment incorporates hard-
ware conditions, system soft-
ware configurations, user pref-
erences, etc.

For higher power efficiency,
prior systems adapt to various
factors of a vertical environment.
Code generators adapt to CPU microarchitectures [63]. Mobile/-
cloud offloading [17, 18] and mobile data compression [7] adapt
to the comparative efficiency of CPU and wireless link. Content
fidelity [16, 28, 60] and algorithm accuracy [38] adapt to user
preferences. Network transfer scheduler adapts to network condi-
tions [23, 65, 78] or app preference [6]. Web page or game rendering
adapts to user perception [39, 101]. As such, power-aware adapta-
tion decisions inherently depend on the app’s vertical environment.

By contrast, app-centered adaptation rarely considers “horizon-
tal” factors such as peer app activities, which would require apps to
have not only deep knowledge of each other but also mutual trust.
As a result, power-saving opportunities from horizontal cooper-
ation (e.g., app co-execution [102], cooperative I/O [91], request
piggybacking [53]) are more limited, and are often exploited at the
OS level. These are complementary to the app-centered adaptation
under discussion.

Comparative power drives actions To make an adaptation
decision, an app often chooses one action out of multiple candi-
dates by comparing their power impacts. In existing power-aware
systems, these alternative actions include program partitioning
plans [17, 18, 59], code generation strategies [63], middleware con-
figurations [60], graphics rendering strategies [39], network trans-
fer plans [23, 65, 78], hardware component combinations [14], and
compression algorithms [7].

Summary: essential power knowledge We summarize the
power knowledge that is essential to app adaptation as follows:

(1) An app demands to observe power consumption of itself and
its vertical environment at fine temporal granularity. It is
often indifferent to the power impacts of peer apps.

(2) An app must be able to compare the above power observa-
tions quantitatively.

Unfortunately, this essential power knowledge mismatches what
apps are learning from the current approach to power awareness.
Next, we examine this approach, in particular its two key steps.

2.2 Fine-grained power metering is getting
easier

System-level power metering2 used to be the major challenge to-
wards power awareness. While most prior work metered power
using models [25, 26, 59, 70, 71, 81, 96, 97], such modeling for
modern hardware is increasingly difficult, due to processor het-
erogeneity, variation in fabrication [83], and changing operating
conditions [56].

Fortunately, directmeasurement, the alternativemeteringmethod,
starts to show high promise. Besides the known benefits of high rate
(>10KHz) and accuracy (in mW) [56], recent work demonstrates
that direct measurement can be efficient and therefore in situ, by of-
floading periodic power sampling and pre-processing to low-power
microcontrollers [11, 79]. Fine-grained, inexpensive power meter-
ing enables characterization of short-lived software activities, and
is likely to become a common feature of future hardware platforms.
We will discuss this in detail in §8.1.

2.3 Accounting is hard due to power
entanglement

Even though system power can be metered at a high resolution,
attributing it to separate apps encounters a fundamental difficulty:

Power entanglement: In a work-conserving OS that
aggressively multiplexes apps on hardware, concur-
rent apps impact the hardware power simultaneously,
and the impacts become inseparable.

We identify three major causes for power entanglement:
• Spatial concurrency in hardware Multiple apps concurrently
use disjoint hardware resources for which power can only be
metered as a whole. Note that such power metering scopes
are often hardware design choices. We show this with a
simple experiment in Figure 3(a). On a dual-core CPU with
one power rail, we measure the whole CPU power, and com-
pare i) only running one process on core 0 to ii) additionally
running a second instance of the same process on core 1.
As shown in the figure, one cannot simply extrapolate the
former run’s power, e.g., by doubling it, to get that of the
latter run. This is because in the latter run, the power im-
pacts of two active CPU cores are entangled, as has also been
confirmed by prior work [102].
• Blurry request boundary Many hardware components, no-
tably accelerators and I/O, accept requests from CPU and
execute the requests asynchronously. Since CPU lacks vis-
ibility into the execution durations of in-flight requests, it
cannot differentiate their power impacts. In Figure 3(b), we
show the durations of three consequent GPU commands
and the GPU power. The commands’ durations are to the
best of CPU’s knowledge. Each duration starts when the
command leaves the OS and enters the GPU, and ends when
the OS is notified command completion by a GPU interrupt.
Although we expect that the power of command 2 is similar
to that of command 3 (they are of the same type), command
2 significantly overlaps with command 1 in time and their

2In this paper, we use “metering” to refer to both physically measuring energy and
inferring energy through software models.

 0

 2

 4

 6

 8

0.0 0.5 1.0

Po
w

e
r/

W
a
tt

Time/Sec

2 instances
1 instance (doubled)

(a) Total CPU power of two co-running process instances,
one on each core, compared to 2× power of one instance
running alone. Hardware: 2×core Cortex-A15

1
2

3C
m

d
s

 0
 0.5

 1
 1.5

 2

0.0 5.0 10.0 15.0 20.0 25.0

1
2

3

Po
w

e
r/

W
a
tt

Time/ms

(b) A sequence of three GPU commands (top) and the to-
tal GPU power (bottom). Commands of the same type
have the same color. Hardware: PowerVR SGX544MP

 0

 1

 2

 3

0.0 0.4 0.8

Po
w

e
r/

W
a
tt

Time/Sec

exec after busy
exec after idle

(c) Comparison of CPU power of the same app when it
runs after aCPU idle period andwhen it runs after a busy
period.

Figure 3: Examples of power entanglement

power impacts are hence entangled. The OS is incapable of
separating power of these two commands.
• Lingering power state Software workloads may prompt
changes in the hardware power state, which will affect the
power of subsequent workloads. In Figure 3(c), we compare
the CPU power when one app runs in two different scenarios:
running after the CPU has been idle for a while; running
right after the completion of another busy workload. The
latter scenario incurs noticeably different power, as the CPU
clock rate raises prior to the app execution. Similar effects
exist in transmission power of wireless interfaces.

Power entanglement exists no matter how power is metered,
either through modeling or direct measurement. In particular, mod-
eling suffers from all the causes above, as most existing modeling
techniques infer system-level power from aggregated hardware ac-
tivities, e.g. total LLC misses read from performance counters [81].
High-rate direct measurement does not help either, since the above

causes prevent obtained power samples from being attributed to
apps, as we will demonstrate in evaluation (§6).

Existing approaches are inadequate Existing accounting
mechanisms cope with power entanglement reactively at best. They
divide system power among apps using a variety of heuristics: even
splitting [94], attributing each app’s marginal contribution [25],
attributing based on app hardware utilization [100], or attributing
to the app that uses the hardware most recently [70].

These heuristics are useful for system-level energy accounting,
in that they encapsulate the beliefs or policies of the OS designers.
However, they are unable to address the aforementioned major ob-
stacles in per-app power awareness, since no accounting heuristics
can eliminate power entanglement that has already occurred.

2.4 Power entanglement creates reasoning
difficulty

Existing accounting mechanisms provide per-app power shares
that are difficult for apps to reason about or reproduce. For instance,
merely based on its power share, one app can hardly tell why one
network transmission consumes more energy than others of the
same length (which could be because the OS charged the WiFi tail
energy to this particular transmission [70, 96]); or why multiple
invocations of the same function showmuch different power behav-
iors (which could be because varying workloads ran concurrently
on other CPU cores).

One may suggest that besides dividing the system power, OS
should open up its accounting internals to apps, e.g., publishing the
hardware usage of concurrent apps and the accounting heuristics
used by the OS. This will create more problems. i) Besides reasoning
about power, app developers now need to reason about power
accounting heuristics. As the heuristics become non-trivial (e.g.
based on cooperative game theory [25]), app development soon
becomes a daunting task. ii) Revealing apps’ hardware usage to
each other may create security vulnerabilities.

2.5 Power entanglement creates security
vulnerability

Dividing system power among apps may reveal their power be-
haviors to each other. When the apps are mutually distrusted, this
creates a known vulnerability called power side channels [10]: by
observing the power of a victim app, an attacker app may learn
the victim’s security-sensitive behaviors, such as encryption and
authentication procedures [51, 52, 95], GPS usage [58], or GUI
state [95].

We next demonstrate that power entanglement can be exploited
through power side channels, showingGPU power leaks a browser’s
deep information – which website it is visiting. We co-run two apps:
a browser (victim) is scripted to open the Alexa top10 websites;
an attacker app, while executing light GPU workloads as camou-
flage, attempts to infer what website the browser is opening. We
train the attacker once with the GPU power traces collected when
the browser runs alone, labeled by website URLs. In subsequent
runs, the attacker infers the websites based the similarity between
its known and observed GPU power activities. The similarity is
measured with DTW, a well-known algorithm for time-series anal-
ysis [2].

Our results show that the attacker’s success rate of inference is
60%, 6× higher than random guess. This is because different web
pages tend to generate different GPU workloads, and hence unique
power signatures.

2.6 Design choices
We advocate an OS principal for any power-aware app to observe
the collective power of the app itself and its vertical environment.
Specifically, the OS should achieve three objectives:

(1) Insulate app power observation The OS shields an app’s
power observation from the impacts of other apps, and hence
eliminates power entanglement for this observation. The OS
does so by adjusting resource multiplexing.

(2) Preserve vertical environment The OS keeps an app vertical
environment unchanged, whether the app is using the OS
service for observing power or not. This enables apps to
make valid adaptation decisions based on their insulated
power observations.

(3) Track and charge cost The OS charges any overhead or lost
multiplexing opportunity in insulating power observations
to the requesting app. This ensures fairness among all apps
despite their different usages of the service.

Following these choices, we introduce a new OS principal called
power sandbox, or psbox, as will be presented below.

3 SYSTEM OVERVIEW
psbox is an OS principal enclosing one power-aware app, i.e., one
or a group of user processes. It is the only way for any app to
observe power. More specifically, a psbox exposes an interface of
virtual power meter to the enclosed app, from which the app may
read real-time power consumption incurred by the app and its
vertical environment. In this observed power, the only possible
contributions of concurrent apps are periods of idle power.

1 // Create a power sandbox
2 box=psbox_create(HW_CPU /* optional */);

3 psbox_enter(box);
4 // Continuous collection of power

samples
5 psbox_sample(box , &buf , NUM_SAMPLES);
6 // One -time query of energy
7 energy = psbox_read(box);
8 psbox_leave(box);

Listing 1: The psbox User API

Intended usage of psbox Since a psbox’s overhead is charged
to the sandboxed app, we expect apps to use psbox as a “pay as
you go” service. They use psbox to periodically sample power, or
selectively monitor power during interesting execution phases, and
leave psbox for full-speed execution. An app makes power-aware
decisions according to its psbox’s virtual powermeter. After the app
leaves the psbox, its decisions remain valid, since the OS preserves
the app’s vertical environment (§2.1). The app only pays the price
of psbox during a small fraction of its execution time.

We would like to stress this “pay as you go” power sandboxing
is complementary to, and may coexist with, the OS mechanisms

that optimize multiplexing of power-unaware apps for combined
efficiency [40, 66, 102].

The app interface Apps access psbox through the API sum-
marized in Listing 1. An app creates a psbox and binds it to a set
of hardware components of which power is reported (line 2). The
granularity of hardware sets is determined by the possible power
metering scopes as supported by hardware. For example, the hard-
ware can be a subset of CPU cores sharing one measurable power
rail [5]. During execution, the app is at liberty to enter or leave the
psbox (line 3 and 8).

When it is in psbox, the appmay query the psbox’s virtual power
meter. Similar to accessing CPU performance events [62, 90], the
app may collect power samples in a user-provided buffer (line 5)
or poll to get the accumulated energy (line 7). Unlike existing CPU
events (including the power events [21]), all psbox power readings
are timestamped. These timestamps come from a standard clock
that apps can access through the clock_gettime() syscall. This
allows apps to readily map power readings to software activities at
fine granularities. Depending on metering methods, the timestamp
resolution can be as high as 10 µs, as will described Section 5.

Kernel enforces psbox boundaries The kernel eliminates
power entanglement for a psbox. To do so, the kernel allocates
spatial and temporal partitions of hardware resources at fine gran-
ularities, and grants exclusive use of them to the psbox. We term
these partitions resource balloons, which are exemplified by a set
of CPU cores and a time slice of the WiFi interface. Having estab-
lished the boundaries for resource balloons, the kernel meters the
corresponding hardware power, through either direct measurement
or modeling (§2). The kernel then reveals the metered hardware
power to the psbox’s virtual power meter.

Kernel confines performance loss A psbox incurs perfor-
mance overhead. Most notably, the exclusive use of resource bal-
loons likely leads to hardware under-utilization. The kernel tackles
the overhead in two ways. On one hand, the kernel reduces the
overhead by keeping resource balloons small, as will be shown
in Section 6. More importantly, the kernel confines the overhead
to the sandboxed app and minimizes the impact on apps outside
the psbox. To do so, the kernel tracks the lost sharing opportunity
due to resource ballooning, bills it to the sandboxed app, and prop-
erly disadvantages the sandboxed app in future competitions for
accessing the hardware.

4 KERNEL SUPPORT
To support psbox, we face a twist of two challenges: i) eliminating
power entanglement (§2.3) by changing how the kernel multiplexes
concurrent apps on hardware; ii) integrating the changes into ma-
ture kernel mechanisms to avoid disruptive modifications. To ad-
dress the first challenge, we present a model for extending kernel
drivers; to address the second challenge, we describe how to apply
the model to the kernel subsystems that manage major hardware
components. For brevity, the remainder of this paper refers to these
kernel subsystems as drivers in general.

4.1 The driver model
We propose two lightweight extensions to existing drivers.

Resource ballooning Resource multiplexing must respect
psbox boundaries. More specifically, the kernel must confine spatial
concurrency and asynchronous requests, twomajor causes of power
entanglement (§2.3). To this end, we retrofit the concept of memory
ballooning for virtual machines [89]. The kernel allocates fine-
grained resource partitions, called resource balloons, and makes
them exclusive to a psbox. The kernel schedules resources balloons
together with other normal apps, enforces balloon boundaries, and
meters the power of resource balloons for the psbox.

We next describe two types of balloons. In the discussion, we
use psbox⟨App ,hw⟩ to denote a psbox bound to hardware hw and
enclosing an app App . We useApp to refer to all other apps outside
the psbox.

• Spatial balloon is for confining spatial concurrency on OS-
schedulable, preemptable resources, most notably CPU cores.
It prevents App and App from using hw simultaneously.
To do so, when granting the access of hw to App , the OS
schedules in a spatial balloon that occupies all the resources
in hw , which effectively exclude App from hw .
• Temporal balloon is for confining request asynchrony on
accelerators and I/O devices. It prevents App and App from
having in-flight requests submitted to hw simultaneously. To
do so, when granting App the access tohw , the OS schedules
in a temporal balloon, a time slice during which the OS only
dispatches the requests from App tohw . At the start and end
of the temporal balloon, the OS drains in-flight requests by
holding back new requests until hw completes the existing
ones.

A key advantage of resource balloons is they appear as normal
scheduling entities to the existing kernel infrastructure. Hence, they
keep most of the latter oblivious and therefore unmodified. i) The
kernel’s existing accounting mechanism does not differentiate the
portion of hw used by App from the portion intentionally kept idle
by the balloons, e.g. unused CPU cores or stalled GPU cycles. The
kernel simply bills all the resource occupied by the balloons to App .
ii) The kernel’s existing schedulers, e.g. for CPU or for network
packets, still enjoy full freedom of choice: they are at liberty to
decide whether and when to schedule a balloon on hw , and may
freely multiplex App on hw without constraints.

Figure 7 in evaluation shows resource balloons in action.
Power state virtualization Enclosed in a psbox⟨App ,hw⟩,

App should neither observe any lingering power state (§2.3) on
hw nor leave any residual state after using hw . To this end, the OS
keeps a virtual copy of the power state of hw for each psbox (and
a separate copy for App). Upon scheduling in a resource balloon
on hw , the OS puts hw in the power state in which the psbox left
hw previously; when scheduling out the resource balloon, the OS
extracts the hardware power state and saves it for the psbox.

To make this idea practical, we put hardware power states into
two categories, depending on the costs of the related state transi-
tions, and treat them differently:

• Off/suspended states, in which devices lose power or remain
in deep sleep. Examples include CPU deep sleep that re-
tains no cache content, or GPS cold start without any locked
satellite. Exiting these power states often requires expensive

hardware operations, e.g. device initialization. Once a device
exists such an off/suspended state, it often remains in an
operating state for a long period, as described below.
• Operating/idle states are rough equivalents of P and C states
in ACPI [36], which control performance settings of a work-
ing device or power saving of an idle device. A device can
switch among these states at low cost and with low delay
(often sub-milliseconds). Examples include CPU frequencies
and WiFi transmission power levels.

The kernel virtualizes operating/idle states and reports the cor-
responding hardware power to psboxes. By contrast, it neither
virtualizes off/suspended states nor reveals the power pertaining
to these states. The rationales are as follows. First, reconstructing
off/suspended states for each psbox can be prohibitively expensive,
e.g. it requires to cold restart a GPS device for each new psbox.
Furthermore, it is unsafe to reveal unvirtualized off/suspend hard-
ware states to apps, which would allow a malicious app to infer
the device usage, e.g. whether other apps have just used GPS for
localization, through power side channels (§2.5). Hence, for the
durations when hw is off/suspended, the kernel simply feeds psbox
with samples of hw’s idle power. To App , hw appears idle.

4.2 Applying the driver model
According to our model, a driver takes on two new responsibilities
for psbox:

(1) Enforcing resource balloon boundaries, including virtualiz-
ing power states;

(2) Tracking lost opportunities of resource sharing and counting
them against App .

Beyond these two, balloon scheduling is handled by existing
kernel mechanisms transparently.

Multicore CPU
We build spatial balloons into the CPU scheduler. A typical mul-
ticore CPU scheduler runs multiple instances, one for each core
and managing a runqueue of local tasks (processes or threads). To
choose the next running task, an instance picks the one with the
best scheduling credit. Scheduling credits are often computed from
tasks’ recent CPU usage. For scalability, scheduler instances rarely
communicate.

To enforce spatial balloons for psbox⟨App ,hw⟩, the CPU sched-
uler coschedules tasks of App on all the cores of hw. If the runnable
tasks in App are fewer than the cores, the scheduler runs dummy
tasks on the remaining cores to force them idle.

To do this, an existing multicore scheduler faces twofold chal-
lenges. First, it needs to decide when to start and end a coschedul-
ing period across a set of cores. However, in current designs each
scheduler instance schedules its local tasks independently. Second,
according to CPU cycles spent in coscheduling, the scheduler needs
to discount scheduling credits, and hence ensure fairness between
App and App across all the cores. However, in current designs an
instance focuses on maintaining fairness among its local tasks.

While the idea of coscheduling is long known [69], the above
challenges were still considered unaddressed on multicore, espe-
cially the fairness concern [20]. To address the challenges, we in-
troduce a new notion of scheduling loan with three key ideas: i)
we allow a scheduler instance to pick a task T for execution even
if T does not have the best scheduling credit among all the local
runnable tasks; ii) in order to be picked, T must get a loan to tri-
umph other runnable tasks and pay back the loan with its future
credits; iii) all tasks in App share their scheduling loans.

Our augmented multicore scheduler works as follows.
• Scheduling entities: Similar to a Linux cgroup, a psbox has
a set of scheduling entities {E}, one entity on each core. An
entity Ei encompasses all tasks in App on core i and keeps a
collective scheduling credit. The kernel schedules Ei together
with other normal tasks.

(1) Schedule in: Same as in current designs, the scheduler in-
stance on core i picks Ei when Ei has the best scheduling
credit. The instance further picks a task within Ei to run.

(2) Task shootdown: The scheduler instance thus requests all
other cores to schedule in their corresponding entities in {E}.
It does so by sending inter-processor interrupts to all other
cores. Upon request, the scheduler on a remote core j picks
Ej : it calculates ∆j , the initial loan of Ej , as the difference
between Ej ’s current scheduling credit and that of the most
favorable task on core j (which would otherwise run). After
shootdown, all tasks in App are off CPU and a coscheduling
period for App starts.

(3) Running & loan update: During coscheduling, scheduler in-
stances bill local CPU cycles to the corresponding entities
in {E}. When any scheduler instance, e.g., the one on core i ,
is invoked for rescheduling, it takes the chance to calculate
the extra loan needed by Ei to warrant Ei ’s continue use of
core i , and add this new loan to ∆i .

(4) Schedule out: The coscheduling of App continues until none
of {E} has the best credit on their corresponding cores, i.e.,
they all need extra loans to continue. At that time, the sched-
uler simultaneously schedules out all Ei from all the cores,
by performing another shootdown.

(5) Loan redistribution & repayment: When scheduling Ei out, a
current scheduler design will adjust Ei ’s credits based on the
time Ei just runs. We further make App pay back the loans
that have accumulated during the preceding coscheduling
period. To provide long-term fairness over all the cores, all
entities in {E} evenly split their total loans. The scheduler
redistributes the loans within {E}, which will disadvantage
App in future scheduling.

Accelerators
Accelerators, such as GPU and DSP, execute commands offloaded
from the CPU. The lowest CPU/accelerator interface is often a
shared command queue. To exploit hardware parallelism, the com-
mand queue is asynchronous: CPU may dispatch multiple com-
mands to the queue, and will be notified by the accelerator on the
completion of these commands.

In multiplexing apps on an accelerator, the corresponding driver
schedules their commands. The driver picks one app’s pending

commands for dispatch, based on the scheduling credits of all apps,
e.g., their recent accelerator usages, and the driver’s scheduling
policy. To support psbox, we bake temporal balloons (§ 4.1) in the
driver. We augment how the driver switches among commands
of different apps and bills the accelerator usage; meanwhile, we
keep any scheduling policy intact. In a nutshell, i) the augmented
driver treats App as a single app in scheduling; ii) the driver avoids
dispatching commands of App as long as any commands from App
are outstanding; iii) the driver bills any resultant lost opportunity
in utilizing the accelerator to App ; iv) the driver further virtualizes
the accelerator’s operating frequency, its most important power
state, for each psbox.

We next describe how the driver schedules in and out a temporal
balloon.

(1) Drain others: When the driver’s scheduling policy decides
to dispatch commands for App , the driver buffers all subse-
quent requests (from both App andApp) until the accelerator
hardware notifies the completion of all existing commands.
During this phase, the driver bills the unutilized portion of
the accelerator (e.g., idle DSP cores) to App as if the portion
was actually used by App .

(2) Flush psbox: After draining outstanding commands, the dri-
ver sends out any buffered command for App , which may
have accumulated during phase 1.

(3) Serve psbox: The driver directly dispatches all the subsequent
requests from App to the accelerator while buffering the
ones from App.

(4) Drain psbox: When the driver’s scheduling policy decides
that App deserves the access of accelerator, it drains any
outstanding commands from App in a way similar to phase
1. Over the course of phase 2–4, the driver bills the usage of
entire accelerator to App .

(5) Flush others: The driver sends out any buffered commands
from App, which may have accumulated in phase 4, in their
queueing order. Thereafter, it buffers all subsequent com-
mands from App while dispatching ones from App directly.

The above design integrates well with existing schedulers, yet are
not tied to any specific definition of fairness or scheduling policy. A
challenge to demonstrating this, however, is that many production
accelerator drivers use simple scheduling policies, e.g., round-robin
dispatch, which do not guarantee fairness. In our implementation
described in Section 5, we have built fair queueing schedulers as
baseline designs for GPU and DSP on our test platform, and aug-
ment the schedulers for supporting psbox.

Wireless interfaces
Wireless network interfaces (NICs) such as WiFi interface, are asyn-
chronous by nature. Often, apps trap into the kernel to deposit their
packets into their corresponding kernel buffers; the driver incor-
porates a packet scheduler to dispatch these packets into a unified
transmission queue, from which the driver will send packets to the
NIC in order. The packet scheduler determines scheduling credits
for apps based their total sent bytes; it ensures fairness through its
queueing discipline, e.g., the Linux fq_codel.

We tap into the packet scheduler to realize temporal balloons for
NICs. We realize packet draining phases similar to accelerators as
described above, while holding back packets in per-socket buffers
instead of a global queue. To better assess lost sharing opportuni-
ties, the packet scheduler inspects packets that are buffered due to
temporal balloons. It identifies any buffered packets that could have
been dispatched without the balloons. Based on the total bytes in
these packets, the driver discounts the scheduling credit of App as
a penalty for the lost opportunities.

A particular challenge is making packet reception respect psbox
boundaries (§4.1). To achieve this, the NIC should defer receiving
the packets that are not destined to the current temporal balloon,
a function unsupported by commodity wireless NICs. Because of
this, our current implementation is limited in insulating power
impacts of receiving different packets. Yet, we have observed that
such reception deferral can be achieved by exploiting virtual MAC
addresses, an emerging feature of recent WiFi NICs [13, 15, 92]: the
driver creates one virtual MAC for each psbox and switches among
virtual MACs as it switches among temporal balloons.

Wireless NICs often have non-trivial power state that must be
virtualized. Fortunately, modern WiFi NICs [86] often expose the
control of power states to the OS. Hence, we augment the WiFi NIC
driver to virtualize power states including transmission modes and
power saving timer, and drive an independent state machine for
each psbox. We recognize that cellular (4G) NICs have uncontrol-
lable power states [41] which we will discuss in Section 7.

5 IMPLEMENTATION
We have built psbox into the Linux kernel 4.4 with about 2250
SLoC. We have assembled two hardware prototypes capable of
measuring each of the major hardware components in situ and
separately, as shown in Figure 4. The power sampling is as fast as
100KHz. Besides acquiring power samples, the power meter and the
CPU synchronize their respective clocks to align power samples
with software activities. It is worth noting that the purpose of our
hardware prototypes is for evaluating psbox; they are not intended
to be free-roaming devices as other systems [11, 79].

CPU We build psbox into the Linux completely fair scheduler
(CFS) [61]. Although a CFS instance is able to schedule a process
group (cgroup) as one scheduling entity, it does not coordinate
multiple scheduler instances. We encapsulate each power sandbox
in a Linux cgroup, and coordinate the tasks within through IPI.

GPU We implement psbox for PowerVR SGX544, a mobile
GPU on the platform in Figure 4(a). Due to diversity of modern
GPUs, we further evaluate psbox atop Qualcomm Adreno420 on
Nexus 6. The two GPUs belong to different families, and have very
different hardware/software stacks.

For both GPUs, we tap into their GPU command queues to im-
plement fair schedulers in the spirit of the Linux CFS [61]: our
scheduler tracks per-app virtual GPU runtime and favors GPU com-
mands from the app that has the minimal virtual GPU runtime.
Atop the schedulers, the drivers enforce temporal balloon bound-
aries differently, based on their existing structures: since SGX544
directly dispatches commands from syscall contexts to GPU, the
driver buffers app locking requests; by contrast, since Adreno330

DAQ
(MCCDAQ USB1608G)

DAQ Controller
(BeagleboneBlack)

Power
readings

AM57EVM

DSPGPUCPU

To controller

To DAQ

Sampling
Power

DAQ
(MCCDAQ USB1608G)

Wi-Fi Module
(WiLink 8)

BeagleboneBlack

Sampling
Power

To controller

To DAQ

WiFi

GPUCPU DSP

AM57EVM

Po
we

r r
ea

di
ng

s In Situ Power Meter

Dual
Cortex A15

SGX
544MP

TMS320
C66x

BeagleboneBlack

 Cortex
A8

TI
WiLink8

(a) Platform for testing psbox on
CPU, GPU, and DSP

(b) Platform for testing psbox on
WiFi interface

In Situ Power Meter

Sampling
power

SD
IO

 +
 P

ow
er

CPU

Figure 4: Our prototype hardware platforms used in evalua-
tion. In situ, per component power metering (through four
distinct power rails) is built atop a Cortex-A8 controlling
MCCDAQ USB1608G [57] sampling at 100KHz. Time syn-
chronization is over GPIO (not shown). In (b), the Beagle-
bone Black acts as both the target system and the DAQ con-
troller.

buffers GPU commands in per-process queues before dispatching
them, the driver buffers commands from apps.

DSP We implement psbox for TI c66x, a popular multicore
DSP that supports OpenCL. During execution, CPU dispatches DSP
commands, e.g., task execution or cache flush, via a kernel-managed
command queue. Similar to GPU, we enforce resource partitions
atop a fair scheduler along the command queue. The driver further
inspects DSP commands for tracking their dispatch and completion
time.

WiFi We build psbox for the TIWiLink8 NICwith a wl1837 chip
as shown in Figure 4(b). The chip accepts packets and commands
from CPU over SDIO, and runs its own firmware to implement
MAC layer and below.

We build temporal resource partitions into the Linux’s fair packet
scheduler and virtualize the NIC power state in the driver. Despite
the NIC’s support of multiple MACs, when we switch MAC at
run time the NIC resets and loses its association with base sta-
tion. Therefore, the lack of true MAC virtualization defeats our
effort in insulating energy impacts of receiving different packets,
as described in Section 4.2.

6 EVALUATION
We evaluate the drivers augmented for psbox reported in Section 5
using benchmark apps summarized in Table 5. The evaluation an-
swers the following questions:
§6.1 Does psbox eliminate power entanglement?
§6.2 How does psbox impact app performance?

Benchmark Description

C
P
U

bodytrack A vision program tracking human body move (P)
calib3d Camera calibration and 3D reconstruction (O)
dedup Compressing data stream with deduplication (P)

G
P
U

browser A webkit browser opening a Google homepage (T)
magic Rendering a “magic lantern” scene at 60fps (V)
cube Rendering a rotating cube scene at 60fps (Q)
triangle A synthetic app drawing 100k triangles /sec offscreen

D
SP

sgemm Single-precision matrix-multiplication (T)
dgemm Double-precision matrix-multiplication (T)
monte Monte Carlo simulation. (T)

W
iF
i browser A Links browser opening a Yahoo homepage

scp Transmitting a 50MB data file over ssh
wget Transmitting a 50MB data file over http

Figure 5: Benchmark apps used in evaluation. P-PARSEC 3;
O-OpenCV 3.1; T-TI am57 SDK; V-PowerVR SDK; Q-Qt SDK

§6.3 Does psbox confine throughput loss to sandboxed apps?
§6.4 Does psbox facilitate building power-aware apps?

6.1 Elimination of power entanglement
Methodology To test each driver, we run a set of scenarios as
shown in Figure 6. Designating a benchmark app App to be power-
aware, we first runApp alone and then co-run it with other apps. For
co-running scenarios, we compare psbox to an existing kernel-level
accounting mechanism [96] without psbox. This prior mechanism
derives App’s power by dividing each system power sample among
co-running apps based on their hardware usages in each power
sampling interval. Note that we implement this prior mechanism
favorably by tracking hardware usage at the lowest software level
and at very fine granularities (10µs, 10× smaller than prior work [11,
79]).

Our experiments demonstrate that psbox achieves its primary
goal of eliminating power entanglement. As shown in the figure, no
matter whether App is executed alone or co-executed with differ-
ent apps, psbox keeps App’s power observations highly consistent,
e.g., preserving significant power spikes and dips. By contrast, the
power shares produced by the prior mechanism exhibit significant
variations. The power differences are reflected in that of the accu-
mulated energy: while the energy values reported by psbox are less
than 5% within each other in most scenario sets, that of the prior
approach can be as high as 60%. This also supports our argument
in Section 2.3: existing accounting approaches are fundamentally
inadequate, despite of the high metering rate. Note that psbox does
not seek absolute reproducibility of power observations, which is
difficult, if not impossible, on commodity computers. This is be-
cause OS resource scheduling and app behaviors are not guaranteed
to be the same across different runs.

We further show the details of resource multiplexing, without
and with psbox. As shown in Figure 7, psbox creates spatial and
temporal balloons on CPU and DSP, respectively, and hence makes
resource multiplexing respect the psbox boundaries. Outside of
these balloons, the kernel multiplexes other apps freely as usual.

6.2 Performance impact
Latency increase All apps in the system may experience extra
latency in some of their hardware access, if the hardware access

happens to trigger resource balloon switch. Our implementation
keeps the extra latency relatively low. Throughout our benchmark
scenarios, the CPU scheduling latency is increased by tens of µs for
task shootdown; the command dispatch latencies for GPU and DSP
are increased by 1.8 ms and 100 ms on average, respectively.

The increased latency for WiFi packet transmission can be long,
sometimes hundreds of ms. We found this is likely due to internal
notification batching by the firmware of the WiLink NIC on the
platform in Figure 4(b). In addition, the platform’s wimpy CPU also
contributes to interrupt handling latency. The combined software
and hardware behaviors prolong draining phases.

Throughput loss As mentioned in Section 3, the exclusion of
resource balloons may lead to lost sharing opportunities, which will
reduce the total throughput on hardware. In our experiments, the
total throughput loss can be noticeable, ranging from 0.9% (WiFi)
to 9.8% (CPU). In face of the hardware throughput loss, we next
discuss how well psbox maintains fairness among apps.

6.3 Confinement of throughput loss
Our system maintains throughput fairness among apps which may
have different usages of psbox. To ease the comparison of app
throughput loss, we co-run multiple instances of the same app. We
show the throughputs of all the apps in Figure 8. When one app
enters its psbox, it is the only one experiencing throughput loss;
in comparison, the throughputs of other co-executing apps remain
largely unaffected despite the total throughput decrease. Note that
this is achieved without changing existing scheduling policies. This
validates our key design of fully charging lost sharing opportunities
to the sandboxed app (§4.2). We further test the robustness of our
fairness guarantee under extremely high resource contention: we
test the GPU driver, by co-running browser (in psbox) with triangle,
a synthetic, intensive benchmark. Our results show that while the
GPU throughput of browser drops by 4× due to excessive draining
time, that of triangle only decreases by 1%.

6.4 An end-to-end use case
We demonstrate the efficacy of psbox on a virtual reality (VR)
scenario derived from a SDK demo (2K SLoC) [85]. The VR scenario
lets a human user move her hand in order to control animated water
waves. Two CPU tasks are running continuously. The gesture task
processes video frames, identifies hand contours, and recognizes
hand gestures. The rendering task translates the recognized gestures
to wind directions, generates Phillips spectrum and 2D IFFT, and
keeps refreshing a height map for animating the waves.

We, as app programmers, set to make rendering power-aware, so
that it can trade the rendering fidelity (e.g. framerate, resolution)
for lower power at run time. Without psbox, reasoning about the
power of rendering is difficult due to power entanglement, as shown
in Figure 9. To worsen the problem, the gesture task’s workloads
(and hence its power impacts) largely vary based on inputs, i.e.,
the number of contours in a frame. With psbox, the rendering task
observes its power without the varying impacts of gesture. By ad-
justing the rendering fidelity based on its power observation in
psbox, rendering achieves a wide range (8.9×) of power, from 90mW
to 800mW.

Running alone Co-running scenarios
psbox Existing approach

CP
U

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d
936mJ

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d [w/ body]
922mJ (-1.5%)

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d [w/ dedup]
925mJ (-1.2%)

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d [w/ body]
853mJ (-8.9%)

0.0

1.0

2.0

3.0

0.0 0.2 0.5

calib3d [w/ dedup]
804mJ (-14.1%)

D
SP

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm
3018mJ

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm [w/ sgemm]
2906mJ (-3.7%)

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm[w/monte+sgemm]
2959mJ (-2.0%)

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm [w/ sgemm]
1560mJ (-48.3%)

 0

 0.5

 1

 1.5

0.0 2.0 4.0

dgemm[w/monte+sgemm]
1110mJ (-63.2%)

G
PU

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser
201mJ

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ magic]
199mJ (-0.9%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ triangle]
201mJ (0%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ magic]
211mJ (+5.0%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ triangle]
172mJ (-14.4%)

W
iF
i

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser
267mJ

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ scp]
273mJ (+2.2%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ wget]
313mJ (+17.2%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ scp]
412mJ (+35.2%)

 0

 0.5

 1

 1.5

0.0 0.1 0.2

browser [w/ wget]
455mJ (+41.3%)

Figure 6: Power of the benchmark scenarios. In all plots, x-axis: Time/Sec; y-axis: Power/Watt. In each row: even as an app
co-runs with different apps (column 2–5), psbox provides it with consistent power observations (column 2 & 3), which are close
to the power of the app running alone (column 1). This contrasts to the power attributed to the app by an existing accounting
approach (column 4 & 5). The numbers under each plot show the app’s total energy and the difference compared to the energy
when the app runs alone. Some plots cannot display full length of power activities due to space limit.

Without psbox isolation, the rendering task will mistakenly take
entangled power impacts into account. This incorrect power knowl-
edge will mislead the app’s power adaptation strategy, lowering
energy efficiency or user experience. This VR scenario demonstrates
the benefit from insulating power impacts.

7 LIMITATIONS & DISCUSSIONS
Support psbox on extra hardware (1) Display may consume
more than 50% of energy of a smartphone or tablet [12]. Fortunately,
modern displays, notably OLED, are known free of power entan-
glement: each pixel contributes to the total power independently
with little lingering power state [24]. Hence, OS may simply divide
the display power among apps based the pixels produced by each
app [70]. (2) GPS power is unaffected by concurrent uses once the
device is operating. Therefore, the kernel can safely reveal GPS

hardware power, except when the GPS is in off/suspended state,
to individual psboxes. This avoids expensive power state virtual-
ization as described in Section 4.1. (3) Cellular interface While
temporal balloons for cellular interface (4G) can be constructed in a
way similar to WiFi NICs (§4.2), a unique challenge is for the kernel
to virtualize a cellular interface’s power state [96]. In practice, the
state transitions of a cellular interface are not controllable by the
OS, but by the cellular standard that must be agreed with cellular
towers. To this end, psbox will be made feasible on cellular inter-
faces through future hardware support. (4) DRAM consume 5%
– 25% of system energy [8, 12]. Given that DRAM power is often
metered at the level of DIMM [19] or controller [21], it is possible
to realize psbox on DRAM through temporal balloons, However, it
is challenging to track app DRAM usage and ensure fairness, for
which the OS may need to consult hardware performance counters.

Calib3D*
(Idle)

Bodytrack
Others

 0

 2

 4

0 50 100 150

Po
w

e
r/

W
a
tt

Time/ms
(a) Dual-core CPU w/o psbox

Calib3D*
(Idle)

Bodytrack
Others

 0

 2

 4

0 50 100 150

Po
w

e
r/

W
a
tt

Time/ms
(b) Dual-core CPU w/ psbox and spatial balloons
for calib3d*

 0

 10

 20

C
o
m

m
a
n
d

sgemm
monte

dgemm*

 0

 0.5

 1

 1.5

1.0 2.0 3.0 4.0 5.0

Po
w

e
r/

W
a
tt

Time/Sec

(c) DSP w/o psbox. Commands
overlap in time freely.

 0

 10

 20

C
o
m

m
a
n
d

sgemm
monte

dgemm*

 0

 0.5

 1

 1.5

1.0 2.0 3.0 4.0 5.0

Po
w

e
r/

W
a
tt

Time/Sec

(d) DSP w/ psbox and temporal
balloons for dgemm*

Figure 7: Resource multiplexing and the resultant system
power, before and after one app* enters psbox. (a)(b): CPU
schedule and power. When Calib3D runs, the system power
consumption is lower because Calib3D’s psbox forces the
otherCPUcore to stay idle. (c)(d): DSP commands andpower.

Userspace OS daemon Our current implementation focuses
on kernel drivers. In other systems especially Android, multiplexing
of app requests also happens in user-level daemons. It is possible
to build psbox into these daemons by making their request multi-
plexing respect psbox boundaries.

Power-aware entities other than apps Some scenarios de-
fine alternative entities for power awareness, e.g. a user request
served by multiple processes or even machines [30, 81]. psbox may
enclose these entities in addition to an app. To do support this, each
involved process or machine, as points of multiplexing, must be
augmented to respect psbox boundaries.

Alternative OSmechanisms for supporting psbox Besides
our Linux-based instantiation of psbox (§4.2), there are existing OS
mechanisms that are absent in the mainline Linux yet suiting the
need of enforcing psbox. First, scheduler activations [3] help move

 0

 10

 20

 30

 40

Before After

K
B

/s

calib3d
calib3d

calib3d*

(a) CPU

 0

 2

 4

 6

 8

Before After

G
FL

O
P
S

sgemm1
sgemm2

sgemm3*

(b) DSP

 0

 200

 400

 600

Before After

C
o
m

m
a
n
d

s/
s

cube1
cube2*

(c) GPU

 0

 400

 800

 1200

 1600

Before After

K
B

/s

wget1
wget2*

(d) WiFi

Figure 8: Throughputs of co-running app instances, before
and after one instance (marked with *) enters psbox.

 0

 1

 2

 3

0.0 0.5 1.0

Po
w

e
r/

W
a
tt

Time/Sec

others
rendering (in psbox)

Figure 9: CPU power of a VR scenario. The rendering task
enters psbox to observe its power and adapts accordingly

much of the CPU scheduling logic for psbox to user space. With
such a mechanism, an app in its psbox spawns dummy threads
to occupy unused cores for enforcing the balloon boundary; as
the app’s actual threads suspend/resume, the kernel notifies the
app through upcalls, which adjust the number of dummy threads
accordingly. Second, gang scheduling [20], commonly seen in real-
time kernels, directly supports executing all threads in a psbox (a
gang) simultaneously and enforces mutual exclusion among gangs.
Third, systems like Dune [9] creates per-app virtualized views of
the baremetal CPU hardware. This idea can be further extended
to create per-app views of baremetal I/O devices, e.g. WiFi NIC.
The virtualization cost can be further reduced by only enforcing
power insulation (as required by psbox) while eschewing strong
state isolation.

8 ROAD TO EXISTING ECOSYSTEMS
To bring psbox and the power awareness into today’s mobile and
embedded ecosystems, the major challenges are twofold: i) process-
ing high-rate power data with low hardware cost and ii) reusing ma-
ture APIs. We next discuss how these can be achieved by leveraging
the existing software/hardware support for sensor data processing.

8.1 Hardware support
We next discuss how situ power metering (§ 2.2) can be realized
atop existing hardware platforms with little addition.

Integrating with existing sensor hubs To harness rich sen-
sors, most modern mobile/embedded devices incorporate sensor
hubs, whose overall market is projected to exceed 2 billion units [42].
Sensors hubs are dedicated, extremely efficient processors for pre-
processing sensor data, typically incarnated as Arm Cortex-M
MCUs. As the volume of sensor hubs grows, their cost keeps de-
creasing: it is several US dollars per unit at the time of writing. They
are penetrating most of the mobile/embedded SoC market.

By their design, sensor hubs directly suit pre-processing of power
samples. A Cortex-M0 sensor hub clocked at 32 MHz consumes as
low as 13 mW, and is capable of real-time processing of power data
sampled at 1 KHz [50]. Such a sampling frequency already exceeds
what is demanded by existing power-aware systems [28, 29, 79], and
is able to differentiate microscopic power activities, e.g. scheduler
context switch as shown in Figure 7.

Asymmetric cores We recognize that there exist mobile/em-
bedded devices that do not have sensor hubs (yet). To increase
efficiency of pre-processing power samples, they can leverage the
lower-power cores inmodern Arm architecture, e.g. big.LITTLE and
DynamIQ [64]. The trend of increasing architectural asymmetry
promises better processing efficiency.

Utilizing low-cost power sensors Modern mobile devices
are already sensor-rich. For instance, the recent iPhone X has eight
sensors of different types [43], ranging from the accelerometer to
proximity sensor. Often, it is the types of sensors that differentiate
mobile devices. While existing sensors are for extrospection, we be-
lieve it is equally valuable and feasible for the devices to additionally
incorporate power sensors for introspection.

Power sensors can be very cost effective. The simplest power
sensor can be a shunt resistor accompanied by an analog-to-digital
converter (ADC); the latter can be further integrated into an on-chip
I/O controller [5]. The combined cost is less than $1 [87]. Standalone
current sensing ICs provide additional design convenience. At mi-
nor cost (around $1 per unit) [44], such an IC can be attached to a
device’s I2C bus with little extra hardware complexity. A typical
current sensing IC [45] is capable of sampling three power rails
at 500KHz simultaneously and returns digitalized power samples.
They are already pervasive on experimental devices including Tegra
X1 [67], X2 [68], Odroid XU3 [35].

8.2 Software support
To foster its adoption, psbox can further leverage the existing soft-
ware infrastructure. This includes mature API frameworks and
processing algorithms of sensor samples.

High-level sensor APIs Mobile OSes such as Android and
iOS support tens of sensor types. They already offer mature APIs for
apps to retrieve sensor data and subscribe to sensor events [4, 33].
The psbox native interface, as presented in Section 3, can be further
wrapped under such APIs, adding a new “power” sensor type. For in-
stance, through calling Android’s SensorManager.registerListener,
an app is able to retrieve power samples or register callbacks for
“high power” events. This is exactly how today’s apps monitor
existing sensors such as accelerometers.

To cater to app-defined power events, existing sensor APIs can be
further augmented with simple temporal predicates [73]. Through
embedded scripting languages such as Lua or Javascript, the apps
can specify events such as “frequent power spikes” or “power keeps
increasing”. The predicates are continuously evaluated over power
samples by the OS or the sensor hub.

Sensor hub runtime As discussed before, processing of power
samples can be offloaded to sensor hub hardware for efficient execu-
tion. Fortunately, there exist rich runtime software on sensor hubs
that facilitates such offloading. First, existing commodity sensor hub
runtimes, e.g. SenseMe [74], are already mature; they provide an
arsenal of signal processing algorithms, e.g. denoising, that can pre-
process power samples with high efficiency. Second, recent research
has proposed a variety of techniques for simplifying new code devel-
opment for sensor hubs. For instance, our work Reflex [55] creates a
software distributed shared memory between CPU and sensor hubs;
MobileHub [80] automatically learns sensor events and produces
event detection code for sensor hubs; Sidewinder [54] supports
composition of parameterized, pre-defined algorithms for sensor
hubs. These rich techniques are applicable to development of power
data processing algorithms for sensor hubs.

9 RELATEDWORK
Power metering Much work infers power from software-visible
events, such as syscall activities [70, 71], kernel activities [96], hard-
ware states [26, 59, 81, 82, 94, 97, 100]. They often construct linear
models either during development [59, 70, 71, 81, 96, 97, 100] or
at run time [26, 82, 94]. Although convenient, energy modeling is
limited by complex hardware [56] and high variation in semicon-
ductor process [83]. Intel RAPL [21] is a CPU feature: the firmware
monitors hardware activities and infers power based on pre-defined
models. Yet, lacking timestamps, RAPL power samples can hardly
be mapped to software activities at fine time granularity [22, 34]. Di-
rect measurement allows accurate power metering through external
multimeters [28, 29], fine-grained hardware instrumentation [84],
smart switching regulators [27], smart battery interfaces [11, 79],
and specialized metering circuits [32, 88]. Regardless of metering
approaches, power entanglement is inevitable as explained in Sec-
tion 2, which necessitates power sandboxes.

Power accounting heuristics As mentioned in Section 2,
prior work attributes power using various heuristics. Eprof [70,
71] attributes lingering tail power to the last triggering entity.
HaPPy [99] splits hyperthreading CPU power based on per-thread
aggregated cycles. Ghanei et al. [31] track asynchronous hardware
use and evenly divides power among concurrent apps. Dong et
al. [25] attribute energy based game theory. Power Containers [81]
meters per core power, while evenly splitting the power of shared re-
sources among active cores. Joulemeter [47] models per-VM power
in the server by inferring system power from hardware activities
reported by OS or performance counters. However, without elim-
inating power entanglement, they suffer from the inadequacies
described in Section 2. It is also difficult to apply the performance
counter-based approaches to many accelerators and I/Os that lack
performance counters.

OS-level power management Power management has been
a key OS responsibility. Odyssey [28, 29] enables the OS to guide

apps for energy-aware adaptation. ECOSystem [97] and Cinder [77]
present OS-level abstractions for energy. Koala [82] builds energy
models in the kernel and sets performance/efficiency dynamically.
Rao et al. [75] build a controller to balance performance loss and
energy saving, based on application-specific data profiled offline. OS
also manages power for accelerators [72] and I/O devices [93, 98].

However, none prior work presented virtualized power view to
individual apps.

Power side-channel attacks Prior work exploits power side
channels to steal private information on smartphones [95], recover
cryptographic keys [51, 52], reveal mobile user geolocations [58],
and leak information across virtual machines [37]. However, few
systems prevent power side channels through active resource man-
agement as we do.

OS resource scheduling Several proposals on scheduling are
in particular related to psbox. GPU scheduling has been advocated
for long. TimeGraph [48] prioritizes and isolates performance of
competing apps. PTask [76], Gdev [49], andMenychtas et al. support
fair sharing of GPU. ShuffleDog [40] prioritizes UI tasks through
resource scheduling. SmartIO [66] reduces app delay by prioritiz-
ing disk reads over writes. Energy discounted computing [102]
co-schedules tasks to improve total system efficiency. Complemen-
tary to psbox, these scheduling proposals target performance or
efficiency for power-unaware apps.

10 CONCLUSIONS
An app’s power observation should be insulated from the impacts of
concurrent apps. We introduce power sandbox, a new OS principal
capturing the power of the enclosed app and its vertical environ-
ment. To support power sandbox, our key techniques are two: to
allocate exclusive resource partitions at fine granularities and bill
the lost sharing opportunities; to virtualize hardware power states.
Our experience shows that power sandbox simplifies reasoning,
eliminates security vulnerability, and still ensures fairness among
apps.

ACKNOWLEDGMENTS
For this project: the authors affiliated with Purdue ECE were sup-
ported in part by NSF Award #1464357, NSF Award #1718702, and
a Google Faculty Award; the authors affiliated with Peking Uni-
versity were supported in part by the National Key Research and
Development Program of China under Grant 2016YFB1000105 and
the National Natural Science Foundation of China under Grant
61725201. The authors thank the anonymous reviewers and the
paper shepherd, Prof. Romain Rouvoy, for their useful feedback.

REFERENCES
[1] Perf. https://perf.wiki.kernel.org/index.php/Tutorial.
[2] Dynamic Time Warping, pages 69–84. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2007.
[3] Thomas E Anderson, Brian N Bershad, Edward D Lazowska, and Henry M Levy.

Scheduler activations: Effective kernel support for the user-level management
of parallelism. ACM Transactions on Computer Systems (TOCS), 10(1):53–79,
1992.

[4] Apple. Core Motion. https://developer.apple.com/documentation/coremotion.
[5] ARM. 64 bit juno arm development platform. http://www.arm.com/files/pdf/

Juno_ARM_Development_Platform_datasheet.pdf, 2014.
[6] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani.

Energy consumption in mobile phones: A measurement study and implications
for network applications. In Proceedings of the 9th ACM SIGCOMM Conference

on Internet Measurement, IMC ’09, pages 280–293, New York, NY, USA, 2009.
ACM.

[7] Kenneth C. Barr and Krste Asanović. Energy-aware lossless data compression.
ACM Trans. Comput. Syst., 24(3):250–291, August 2006.

[8] Luiz AndrÃľ Barroso, Jimmy Clidaras, and Urs HÃűlzle. The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines. Morgan
and Claypool Publishers, 2013.

[9] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and
Christos Kozyrakis. Dune: Safe user-level access to privileged cpu features. In
Proc. USENIX OSDI, OSDI’12, pages 335–348, Berkeley, CA, USA, 2012. USENIX
Association.

[10] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Anal-
ysis with a Leakage Model, pages 16–29. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004.

[11] Niels Brouwers, Marco Zuniga, and Koen Langendoen. Neat: A novel energy
analysis toolkit for free-roaming smartphones. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems, SenSys ’14, pages 16–30, New
York, NY, USA, 2014. ACM.

[12] Aaron Carroll and Gernot Heiser. The systems hacker’s guide to the galaxy:
energy usage in a modern smartphone. In Proc. of the 4th Asia-Pacific Workshop
on Systems (APSYS), page 5. ACM, 2013.

[13] Microsoft Hardware Dev Center. Virtual wifi in kernel mode.
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/
virtual-wifi-in-kernel-mode/, 2017.

[14] Geoffrey Challen and Mark Hempstead. The case for power-agile computing.
In Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems,
HotOS’13, pages 15–15, Berkeley, CA, USA, 2011. USENIX Association.

[15] R. Chandra, P. Bahl, and P. Bahl. Multinet: connecting to multiple ieee 802.11
networks using a single wireless card. In IEEE INFOCOM 2004, volume 2, pages
882–893 vol.2, March 2004.

[16] Hui Chen, Bing Luo, and Weisong Shi. Anole: A case for energy-aware mobile
application design. In Proceedings of the 2012 41st International Conference on
Parallel Processing Workshops, ICPPW ’12, pages 232–238, Washington, DC, USA,
2012. IEEE Computer Society.

[17] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. Clonecloud: Elastic execution between mobile device and cloud. In
Proceedings of the Sixth Conference on Computer Systems, EuroSys ’11, pages
301–314, New York, NY, USA, 2011. ACM.

[18] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: making smartphones last
longer with code offload. In Proc. USENIX/ACM MobiSys, MobiSys ’10, pages
49–62, New York, NY, USA, 2010. ACM.

[19] Zehan Cui, Yan Zhu, Y. Bao, and M. Chen. A fine-grained component-level
power measurement method. In 2011 International Green Computing Conference
and Workshops, pages 1–6, July 2011.

[20] Nikunj A. Dadhania. Gang scheduling in cfs. https://lwn.net/Articles/472797/,
2011.

[21] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian
Le. Rapl: Memory power estimation and capping. In Proceedings of the 16th
ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED
’10, pages 189–194, New York, NY, USA, 2010. ACM.

[22] Spencer Desrochers, Chad Paradis, and Vincent M.Weaver. A validation of dram
rapl power measurements. In Proceedings of the Second International Symposium
on Memory Systems, MEMSYS ’16, pages 455–470, New York, NY, USA, 2016.
ACM.

[23] Ning Ding, Daniel Wagner, Xiaomeng Chen, Abhinav Pathak, Y. Charlie Hu,
and Andrew Rice. Characterizing and modeling the impact of wireless signal
strength on smartphone battery drain. In Proceedings of the ACM SIGMETRIC-
S/International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’13, pages 29–40, New York, NY, USA, 2013. ACM.

[24] M. Dong and L. Zhong. Chameleon: A color-adaptive web browser for mobile
oled displays. IEEE Transactions on Mobile Computing, 11(5):724–738, May 2012.

[25] Mian Dong, Tian Lan, and Lin Zhong. Rethink energy accounting with cooper-
ative game theory. In Proceedings of the 20th Annual International Conference
on Mobile Computing and Networking, MobiCom ’14, pages 531–542, New York,
NY, USA, 2014. ACM.

[26] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling
for battery-powered mobile systems. In Proceedings of the 9th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’11, pages
335–348, New York, NY, USA, 2011. ACM.

[27] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler. Energy metering for free:
Augmenting switching regulators for real-time monitoring. In 2008 International
Conference on Information Processing in Sensor Networks (ipsn 2008), pages 283–
294, April 2008.

[28] Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile appli-
cations. In Proceedings of the Seventeenth ACM Symposium on Operating Systems
Principles, SOSP ’99, pages 48–63, New York, NY, USA, 1999. ACM.

https://perf.wiki.kernel.org/index.php/Tutorial
https://developer.apple.com/documentation/coremotion
http://www.arm.com/files/pdf/Juno_ARM_Development_Platform_datasheet.pdf
http://www.arm.com/files/pdf/Juno_ARM_Development_Platform_datasheet.pdf
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/virtual-wifi-in-kernel-mode/
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/virtual-wifi-in-kernel-mode/
https://lwn.net/Articles/472797/

[29] Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy
usage of mobile applications. In Proceedings of the Second IEEE Workshop on
Mobile Computer Systems and Applications, WMCSA ’99, pages 2–, Washington,
DC, USA, 1999. IEEE Computer Society.

[30] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. Quanto: Tracking
energy in networked embedded systems. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI’08, pages
323–338, Berkeley, CA, USA, 2008. USENIX Association.

[31] Farshad Ghanei, Pranav Tipnis, Kyle Marcus, Karthik Dantu, Steve Ko, and
Lukasz Ziarek. Os-based resource accounting for asynchronous resource use
in mobile systems. In Proceedings of the 2016 International Symposium on Low
Power Electronics and Design, ISLPED ’16, pages 296–301, New York, NY, USA,
2016. ACM.

[32] Bartosz Golaszewski. sigrok: Adventures in integrating a power-measurement
device. http://events.linuxfoundation.org/sites/events/files/slides/ELC_pres_
bgolaszewski.pdf.

[33] Google. Sensors Overview. https://developer.android.com/guide/topics/sensors/
sensors_overview.html.

[34] D. Hackenberg, T. Ilsche, R. SchÃűne, D. Molka, M. Schmidt, and W. E. Nagel.
Power measurement techniques on standard compute nodes: A quantitative
comparison. In 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 194–204, April 2013.

[35] Hardkernel. Odroid xu3: Board detail. http://www.hardkernel.com/main/
products/prdt_info.php?g_code=g140448267127&tab_idx=2, 2014.

[36] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. Acpi - advanced
configuration and power interface. http://www.acpi.info/.

[37] H. Hlavacs, T. Treutner, J. P. Gelas, L. Lefevre, and A. C. Orgerie. Energy
consumption side-channel attack at virtual machines in a cloud. In 2011 IEEE
Ninth International Conference on Dependable, Autonomic and Secure Computing,
pages 605–612, Dec 2011.

[38] Henry Hoffmann. Jouleguard: Energy guarantees for approximate applications.
In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15,
pages 198–214, New York, NY, USA, 2015. ACM.

[39] Mohammad Hosseini, Alexandra Fedorova, Joseph Peters, and Shervin Shirmo-
hammadi. Energy-aware adaptations in mobile 3d graphics. In Proceedings of
the 20th ACM International Conference on Multimedia, MM ’12, pages 1017–1020,
New York, NY, USA, 2012. ACM.

[40] G. Huang, M. Xu, F. X. Lin, Y. Liu, Y. Ma, S. Pushp, and X. Liu. Shuffledog:
Characterizing and adapting user-perceived latency of android apps. IEEE
Transactions on Mobile Computing, PP(99):1–1, 2017.

[41] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata
Sen, and Oliver Spatscheck. A close examination of performance and power
characteristics of 4g lte networks. In Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’12, pages
225–238, New York, NY, USA, 2012. ACM.

[42] IHS Inc. Led by iphone 6s, sensor hubs market is growing fast, ihs says, ihs
markit press release, 2017.

[43] Apple Inc. iPhone X, Tech Specs. https://www.apple.com/iphone-x/specs/, 2017.
[44] Texus Instruments. Ina231, ina3221 triple-channel, high-side measurement,

shunt and bus voltage monitor with i2c and smbus-compatible interface. http:
//www.ti.com/lit/ds/symlink/ina3221.pdf, 2016.

[45] Texus Instruments. Ina3221, 28-v, bi-directional, zero-drift, low-/high-side, i2c
out current/powermonitor w/ alert in wcsp. http://www.ti.com/product/INA231,
2018.

[46] John Levon. OProfile - A System Profiler for Linux. http://oprofile.sourceforge.
net/about/.

[47] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A. Bhattacharya.
Virtual machine power metering and provisioning. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, pages 39–50, New York, NY,
USA, 2010. ACM.

[48] Shinpei Kato, Karthik Lakshmanan, Ragunathan Rajkumar, and Yutaka Ishikawa.
Timegraph: Gpu scheduling for real-time multi-tasking environments. In Pro-
ceedings of the 2011 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’11, pages 2–2, Berkeley, CA, USA, 2011. USENIX Association.

[49] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott Brandt. Gdev:
First-class gpu resource management in the operating system. In Proceedings of
the 2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12,
pages 37–37, Berkeley, CA, USA, 2012. USENIX Association.

[50] Kionix. Kx23h-1035: Arm-based sensor hub with accelerometer. http://www.
kionix.com/product/KX23H-1035, 2014.

[51] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to
differential power analysis. Journal of Cryptographic Engineering, 1(1):5–27,
2011.

[52] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Proceedings of the 19th Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’99, pages 388–397, London, UK, UK, 1999. Springer-
Verlag.

[53] Nicholas D. Lane, Yohan Chon, Lin Zhou, Yongzhe Zhang, Fan Li, Dongwon Kim,
Guanzhong Ding, Feng Zhao, and Hojung Cha. Piggyback crowdsensing (pcs):
Energy efficient crowdsourcing of mobile sensor data by exploiting smartphone
app opportunities. In Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’13, pages 7:1–7:14, New York, NY, USA, 2013.
ACM.

[54] Daniyal Liaqat, Silviu Jingoi, Eyal de Lara, Ashvin Goel, Wilson To, Kevin
Lee, Italo De Moraes Garcia, and Manuel Saldana. Sidewinder: An energy
efficient and developer friendly heterogeneous architecture for continuous
mobile sensing. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’16, pages 205–215, New York, NY, USA, 2016. ACM.

[55] Felix Xiaozhu Lin, Zhen Wang, Robert LiKamWa, and Lin Zhong. Reflex: using
low-power processors in smartphones without knowing them. In Proc. ACM
ASPLOS, pages 13–24, New York, NY, USA, 2012. ACM.

[56] John C. McCullough, Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan
Kuppuswamy, Alex C. Snoeren, and Rajesh K. Gupta. Evaluating the effec-
tiveness of model-based power characterization. In Proceedings of the 2011
USENIX Conference on USENIX Annual Technical Conference, USENIXATC’11,
pages 12–12, Berkeley, CA, USA, 2011. USENIX Association.

[57] Measurement Computing. USB-1608G Series User’s Guide, 2012.
[58] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veerapandian, Dan

Boneh, and Gabi Nakibly. Powerspy: Location tracking using mobile device
power analysis. In 24th USENIX Security Symposium (USENIX Security 15), pages
785–800, Washington, D.C., 2015. USENIX Association.

[59] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering developers to
estimate app energy consumption. In Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking, Mobicom ’12, pages 317–328,
New York, NY, USA, 2012. ACM.

[60] Shivajit Mohapatra, Nalini Venkatasubramanian, Nikil Dutt, Cristiano Pereira,
and Rajesh Gupta. Energy-aware adaptations for end-to- end video streaming
to mobile handheld devices. In E. Macii, editor, Ultra Low-Power Electronics and
Design. Springer Science & Business Media, 2007.

[61] Ingo Molnar. [patch] modular scheduler core and completely fair scheduler.
http://lwn.net/Articles/230501/, 2007.

[62] Philip J. Mucci. PapiEx - execute arbitrary application and measure hardware
performance counters with PAPI. http://icl.cs.utk.edu/~mucci/papiex.

[63] L. Mukhanov, D. S. Nikolopoulos, and B. R. d. Supinski. Alea: Fine-grain energy
profiling with basic block sampling. In 2015 International Conference on Parallel
Architecture and Compilation (PACT), pages 87–98, Oct 2015.

[64] Nandan Nayampally. ARM DynamIQ: Expanding the possibilities for artificial
intelligence. 2017.

[65] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and
David Wetherall. Reducing network energy consumption via sleeping and rate-
adaptation. In Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, NSDI’08, pages 323–336, Berkeley, CA, USA, 2008.
USENIX Association.

[66] David T. Nguyen, Gang Zhou, Guoliang Xing, Xin Qi, Zijiang Hao, Ge Peng,
and Qing Yang. Reducing smartphone application delay through read/write
isolation. In Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’15, pages 287–300, New York, NY,
USA, 2015. ACM.

[67] Nvidia. Jetson tx1 voltage and current monitor configuration application note.
https://developer.nvidia.com/embedded/tegra-2-reference, 2017.

[68] Nvidia. Tegra x2: Technical reference manual. https://developer.nvidia.com/
embedded/tegra-2-reference, 2017.

[69] John K. Ousterhout. Scheduling techniques for concurrebt systems. In Pro-
ceedings of the 3rd International Conference on Distributed Computing Systems,
Miami/Ft. Lauderdale, Florida, USA, October 18-22, 1982, pages 22–30, 1982.

[70] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent
inside my app?: Fine grained energy accounting on smartphones with eprof. In
Proceedings of the 7th ACM European Conference on Computer Systems, EuroSys
’12, pages 29–42, New York, NY, USA, 2012. ACM.

[71] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang.
Fine-grained power modeling for smartphones using system call tracing. In
Proceedings of the Sixth Conference on Computer Systems, EuroSys ’11, pages
153–168, New York, NY, USA, 2011. ACM.

[72] Anuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mitra. Integrated CPU-GPU
power management for 3D mobile games. In Proc. of the 51st Annual Design
Automation Conference (DAC), pages 40:1–40:6, 2014.

[73] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS ’77, pages 46–57,
Washington, DC, USA, 1977. IEEE Computer Society.

[74] QuickLogic. SenseMeâĎć - Sensor Algorithm Library for Mobile Devices. https:
//www.quicklogic.com/technologies/sensor-hub/senseme/.

[75] K. Rao, J. Wang, S. Yalamanchili, Y. Wardi, and Y. Handong. Application-specific
performance-aware energy optimization on android mobile devices. In 2017 IEEE

http://events.linuxfoundation.org/sites/events/files/slides/ELC_pres_bgolaszewski.pdf
http://events.linuxfoundation.org/sites/events/files/slides/ELC_pres_bgolaszewski.pdf
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127&tab_idx=2
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127&tab_idx=2
http://www.acpi.info/
https://www.apple.com/iphone-x/specs/
http://www.ti.com/lit/ds/symlink/ina3221.pdf
http://www.ti.com/lit/ds/symlink/ina3221.pdf
http://www.ti.com/product/INA231
http://oprofile.sourceforge.net/about/
http://oprofile.sourceforge.net/about/
http://www.kionix.com/product/KX23H-1035
http://www.kionix.com/product/KX23H-1035
http://lwn.net/Articles/230501/
http://icl.cs.utk.edu/~mucci/papiex
https://developer.nvidia.com/embedded/tegra-2-reference
https://developer.nvidia.com/embedded/tegra-2-reference
https://developer.nvidia.com/embedded/tegra-2-reference
https://www.quicklogic.com/technologies/sensor-hub/senseme/
https://www.quicklogic.com/technologies/sensor-hub/senseme/

International Symposium on High Performance Computer Architecture (HPCA),
pages 169–180, Feb 2017.

[76] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Em-
mett Witchel. Ptask: Operating system abstractions to manage gpus as compute
devices. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, pages 233–248, New York, NY, USA, 2011. ACM.

[77] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières,
and Nickolai Zeldovich. Energy management in mobile devices with the cinder
operating system. In Proceedings of the Sixth Conference on Computer Systems,
EuroSys ’11, pages 139–152, New York, NY, USA, 2011. ACM.

[78] Aaron Schulman, Vishnu Navda, Ramachandran Ramjee, Neil Spring, Pral-
had Deshpande, Calvin Grunewald, Kamal Jain, and Venkata N. Padmanabhan.
Bartendr: A practical approach to energy-aware cellular data scheduling. In Pro-
ceedings of the Sixteenth Annual International Conference on Mobile Computing
and Networking, MobiCom ’10, pages 85–96, New York, NY, USA, 2010. ACM.

[79] Aaron Schulman, Tanuj Thapliyal, Sachin Katti, Neil Spring, Dave Levin, and
Prabal Dutta. Stanford CS battor: Plug-and-debug energy debugging for appli-
cations on smartphones and laptops. Technical report, 2016.

[80] Haichen Shen, Aruna Balasubramanian, Anthony LaMarca, and DavidWetherall.
Enhancing mobile apps to use sensor hubs without programmer effort. In
Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp ’15, pages 227–238, New York, NY, USA, 2015.
ACM.

[81] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan
Chen. Power containers: An os facility for fine-grained power and energy
management on multicore servers. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, pages 65–76, New York, NY, USA, 2013. ACM.

[82] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot Heiser.
Koala: a platform for OS-level power management. In Proc. of the 4th ACM
European Conference on Computer Systems (EuroSys), pages 289–302, 2009.

[83] Guru Prasad Srinivasa, Rizwana Begum, Scott Haseley, Mark Hempstead, and
Geoffrey Challen. Separated by birth: Hidden differences between seemingly-
identical smartphone cpus. In Proceedings of the 18th International Workshop
on Mobile Computing Systems and Applications, HotMobile ’17, pages 103–108,
New York, NY, USA, 2017. ACM.

[84] T. Stathopoulos, D. McIntire, and W. J. Kaiser. The energy endoscope: Real-time
detailed energy accounting for wireless sensor nodes. In 2008 International
Conference on Information Processing in Sensor Networks (ipsn 2008), pages 383–
394, April 2008.

[85] Texas Instruments. Processor SDK Demos Video Analytics. http://processors.
wiki.ti.com/index.php/Processor_SDK_Demos_Video_Analytics.

[86] Texas Instruments. WL18x7MOD WiLink 8 Dual-Band Industrial Module âĂŞ
Wi-Fi, Bluetooth, and Bluetooth Low Energy, 2015.

[87] Texus Instruments. Ads7040: Ultra-low-power ultra-small-size sar adc. http:
//www.ti.com/product/ADS7040, 2017.

[88] Patrick Titiano. Leveraging open-source power measurement standard so-
lution. http://events.linuxfoundation.org/sites/events/files/slides/Leveraging_
Open-Source_Power_Measurement_Standard_Solution_0.pdf.

[89] Carl A. Waldspurger. Memory resource management in VMware ESX server.
SIGOPS Oper. Syst. Rev., 36(SI):181–194, December 2002.

[90] Vince Weaver. The unofficial Linux Perf Events web-page. http://web.eece.
maine.edu/~vweaver/projects/perf_events. Last accessed: Dec. 12, 2013.

[91] Andreas Weissel, Björn Beutel, and Frank Bellosa. Cooperative i/o: A novel i/o
semantics for energy-aware applications. SIGOPS Oper. Syst. Rev., 36(SI):117–129,
December 2002.

[92] Lei Xia, Sanjay Kumar, Xue Yang, Praveen Gopalakrishnan, York Liu, Sebastian
Schoenberg, and Xingang Guo. Virtual wifi: Bring virtualization from wired to
wireless. In Proceedings of the 7th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, VEE ’11, pages 181–192, New York, NY,
USA, 2011. ACM.

[93] Chao Xu, Felix Xiaozhu Lin, Yuyang Wang, and Lin Zhong. Automated os-level
device power management for socs. In Proc. ACM ASPLOS, New York, NY, USA,
2015. ACM.

[94] Fengyuan Xu, Yunxin Liu, Qun Li, and Yongguang Zhang. V-edge: Fast self-
constructive power modeling of smartphones based on battery voltage dynamics.
In Presented as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), pages 43–55, Lombard, IL, 2013. USENIX.

[95] Lin Yan, Yao Guo, Xiangqun Chen, and Hong Mei. A study on power side
channels on mobile devices. In Proceedings of the 7th Asia-Pacific Symposium on
Internetware, Internetware ’15, pages 30–38, New York, NY, USA, 2015. ACM.

[96] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung Cha.
Appscope: Application energy metering framework for android smartphone
using kernel activity monitoring. In Presented as part of the 2012 USENIX
Annual Technical Conference (USENIX ATC 12), pages 387–400, Boston, MA,
2012. USENIX.

[97] Heng Zeng, Carla Schlatter Ellis, and Alvin R Lebeck. Experiences in managing
energy with ecosystem. IEEE Magazine Pervasive Computing, 4(1):62–68, 2005.

[98] Shuang Zhai, Liwei Guo, Xiangyu Li, and Felix Xiaozhu Lin. Decelerating
suspend and resume in operating systems. In Proceedings of the 18th International
Workshop on Mobile Computing Systems and Applications, HotMobile ’17, pages
31–36, New York, NY, USA, 2017. ACM.

[99] Yan Zhai, Xiao Zhang, Stephane Eranian, Lingjia Tang, and Jason Mars. Happy:
Hyperthread-aware power profiling dynamically. In 2014 USENIX Annual Techni-
cal Conference (USENIX ATC 14), pages 211–217, Philadelphia, PA, 2014. USENIX
Association.

[100] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick,
Zhuoqing Morley Mao, and Lei Yang. Accurate online power estimation and
automatic battery behavior based power model generation for smartphones. In
Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis, CODES/ISSS ’10, pages 105–114, New
York, NY, USA, 2010. ACM.

[101] B. Zhao, W. Hu, Q. Zheng, and G. Cao. Energy-aware web browsing on smart-
phones. IEEE Transactions on Parallel and Distributed Systems, 26(3):761–774,
March 2015.

[102] Meng Zhu and Kai Shen. Energy discounted computing on multicore smart-
phones. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), pages
129–141, Denver, CO, 2016. USENIX Association.

http://processors.wiki.ti.com/index.php/Processor_SDK_Demos_Video_Analytics
http://processors.wiki.ti.com/index.php/Processor_SDK_Demos_Video_Analytics
http://www.ti.com/product/ADS7040
http://www.ti.com/product/ADS7040
http://events.linuxfoundation.org/sites/events/files/slides/Leveraging_Open-Source_Power_Measurement_Standard_Solution_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/Leveraging_Open-Source_Power_Measurement_Standard_Solution_0.pdf
http://web.eece.maine.edu/~vweaver/projects/perf_events
http://web.eece.maine.edu/~vweaver/projects/perf_events

	Abstract
	1 Introduction
	2 A Case for A New OS Principal
	2.1 Power awareness: what matters to apps?
	2.2 Fine-grained power metering is getting easier
	2.3 Accounting is hard due to power entanglement
	2.4 Power entanglement creates reasoning difficulty
	2.5 Power entanglement creates security vulnerability
	2.6 Design choices

	3 System Overview
	4 Kernel Support
	4.1 The driver model
	4.2 Applying the driver model

	5 Implementation
	6 Evaluation
	6.1 Elimination of power entanglement
	6.2 Performance impact
	6.3 Confinement of throughput loss
	6.4 An end-to-end use case

	7 Limitations & Discussions
	8 Road to Existing Ecosystems
	8.1 Hardware support
	8.2 Software support

	9 Related Work
	10 Conclusions
	References

