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ABSTRACT 

We report the first work that examines the internals of web 

browsers on smartphones, using the WebKit codebase, two genera-

tions of Android smartphones, and webpages visited by 25 smart-

phone users over three months. We make many surprising find-

ings. First, over half of the webpages visited by smartphone users 

are not optimized for mobile devices. This highlights the impor-

tance of client-based optimization and the limitation of prior work 

that only studies mobile webpages. Second, while prior work sug-

gests that several compute-intensive operations should be the focus 

of optimization, our measurement and analysis show that their 

improvement will only lead to marginal performance gain with 

existing webpages. Furthermore, we find that resource loading, 

ignored by all except one prior work, contributes most to the 

browser delay. While our results agree with a recent network study 

showing that network round-trip time is a major problem, we fur-

ther demonstrate how the internals of the browser and operating 

system contribute to the browser delay and therefore reveal new 

opportunities for optimization.  

1. Introduction 

As one of the most important applications on smartphones, the 

web browser is known to be slow and often take seconds or tens of 

seconds to open a page. Understanding why the browser is slow is 

critical to its optimization. We are motivated by two recent re-

search endeavors. First, many have studied browsers on personal 

computers and concluded that several key compute-intensive oper-

ations are the bottleneck [2-4]. On the other hand, a recent smart-

phone characterization study [1] demonstrated that the wireless 

hop can significantly slow down the browser by its long round-trip 

time (RTT). However, the authors took a black-box approach 

without looking into the internals of the web browser, thereby 

provided limited insights. 

In this work, we examine the internals of web browsers on 

smartphones with two novel methods. (i) We analyze webpages 

visited by 25 iPhone 3GS users over three months. The analysis 

reveals that over half of the webpages visited are not optimized for 

mobile devices. Therefore, although mobile webpages do make 

browsers faster, they are only half of the story. (ii) We are the first 

to utilize two techniques to analyze the browser performance, de-

pendency timeline characterization and what-if analysis, based on 

instrumenting the popular WebKit source code [5]. We are able to 

truthfully capture the user-perceived delay of opening a webpage, 

reveal the dependency and concurrency of browser operations, and 

evaluate the impact of possible optimizations, which are impossi-

ble using techniques employed in prior work. 

We make the following key findings. (i) Improvement on 

compute-intensive operations suggested by prior work such as style 

formatting, layout calculation [2-4], and JavaScript execution [1] 

will lead to marginal improvement in browser performance on 

smartphones. (ii) Instead, resource loading is the key to browser 

performance on smartphones. Resource loading is the process that 

resources, usually files of various types needed by opening a web-

page, are acquired by the smartphone from the web server. In con-

trast, prior work [2-4] assume resource loading contributes neglig-

ible delay, which is not true with smartphones. (iii) Given a re-

source, the delay of resource loading is determined by the network 

condition, the browser loading procedure and the processing power 

of the smartphone. Our results agree with the findings from [1] that 

long network RTT is detrimental to the browser performance. We 

further find that improvement in network bandwidth will not im-

prove browser performance much beyond typical 3G network. 

Finally, by comparing the behaviors of two smartphones, Google 

Nexus One (N1) and HTC Dream (G1), we observe a more power-

ful hardware, e.g. N1, will reduce the browser delay mainly by 

accelerating OS services and network stack, instead of the com-

pute-intensive operations suggested by prior work.  

Our findings not only shed light into the behavior of web 

browsers on smartphones but also have important implications to 

optimization. In particular, our work suggests that one should ag-

gressively seek to hide the network RTT and improve OS services 

and network stack in order to improve resource loading, instead of 

optimizing the compute-intensive browsers operations, such as 

layout calculation, style formatting, and scripting suggested by 

prior work [2-4].  

The rest of the paper is organized as follows. Sections 2 and 3 

provide the background for the web browser operations and dis-

cuss related work, respectively. Section 4 presents our characteri-

zation methodology, i.e., dependency timeline characterization and 

what-if analysis. Section 5 describes our experimental setup and 

Section 6 offers important findings. Section 7 discusses the impli-

cations of our findings to optimizing web browsers on smart-

phones.  

2. Background 

A modern browser is a very complicated piece of software. For 

example, the WebKit source code in Android 2.1 has around one 

million lines in over 5,700 files [5]. We next provide an architec-

tural overview of WebKit-based browsers.  

When opening a page, the browser incrementally loads mul-

tiple web resources, builds an Internal Representation (IR) of mul-

tiple loaded resources, and converts the IR to the graphical repre-

sentation. A web resource is an individual unit of content or code 

such as HTML documents, Cascading Style Sheets (CSS), pic-

tures, and JavaScrip files. Typically, an IR employs a set of tree 

structures to record different information of hierarchical Document 

Object Model (DOM) elements, which correspond to the various 

HTML elements in the webpage such as paragraphs, images, and 

form fields. 
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The procedure of opening a page (illustrated by Figure 1) in-

volves a set of interdependent operations that can be dynamically 

scheduled and concurrently executed. The operations can be classi-

fied into three categories. The first category includes resource 

loading, which fetches a resource given its URL, either from the 

remote web server or local cache. Resource loading uses services 

from the underlying network stack, e.g., resolving the domain 

name in the URL, handling HTTP URL redirection, establishing 

TCP connections and so on. Given the resource, the latency of 

resource loading is determined by the network RTT, network 

bandwidth, browser loading procedure and the processing power. 

The second category includes five IR operations that produce the 

IR by processing loaded resources and consume the IR to render 

the page. The five operations are HTMLParsing (or Parsing), Sty-

leFormatting (or Style), Scripting, Layout, and Painting. The first 

three process HTML documents, style constraints (e.g., CSS), and 

JavaScript, respectively, and attach results incrementally to the IR. 

Layout computes and updates the screen locations of DOM ele-

ments based on the recently updated IR. Painting employs the IR 

to generate the final graphical representation of the web page. Fi-

nally, all other processing incurred by the browser is treated as one 

operation, called Glue operation, in this paper. 

While it is tempting to think the first six operations described 

above as a pipeline, three key properties of them make the page 

opening procedure far more complicated than a pipeline. First, 

when opening one webpage, an operation can be performed many 

times. For example, it often takes multiple loading-processing 

iterations over multiple resources to finish opening a web page. 

This is because the browser discovers new resources while 

processing loaded ones. Second, operations can be concurrently 

executed. For example, there can be multiple instances of resource 

loading on-going at the same time; in the meantime, they may 

overlap with other operations such as Scripting and Layout. Third, 

operations are dynamically scheduled. For example, with several 

recent updates to the IR, the browser determines when to trigger a 

Layout; the completion of loading a resource leads to its 

processing, and the browser determines when to process; Parsing 

encounters new URLs in a document, and the browser decides 

whether to request them immediately or not. 

2.1 Mobile Webs 

Many web sites provide a mobile version of their pages in or-

der to better fit the content into and better support navigation on 

the small screen [6]. In general, the mobile version of a webpage is 

not as content-rich as the original one intended for personal com-

puters. Mobile webpages tend to have smaller CSS files and fewer 

JavaScripts that lead to lighter workload for Style and Scripting.  

While webpages optimized for mobile devices are usually fast-

er to open, we find that a significant portion of webpages visited 

by smartphone users are not optimized for mobile devices, either 

because the mobile versions are unavailable or the users purpose-

fully choose the non-mobile versions for their richer content. Using 

the traces collected from 25 iPhone 3GS users over three months 

[7], we found that over half (56%) of the pages visited were not 

optimized for mobile devices, or non-mobile webpages, as illu-

strated in Figure 2. Therefore, our characterization will consider 

both mobile and non-mobile web pages. In contrast, the only prior 

work characterizing smartphone browsers mostly uses mobile 

webpages [1]. 

The fact that over half of the webpages visited by smartphone 

users are not optimized for mobile devices further highlights the 

importance of client-based optimization, because many websites 

will simply not provide an optimized mobile version and users 

often prefer information-rich non-mobile pages.  

3. Related Work  

The performance of browsers has attracted quite a lot of inter-

ests from both industry and academia. Existing work, however, is 

limited in both its scope and methods. Characterization work on 

PC browsers assumes resource loading is negligible for PCs with 

enterprise Ethernet and therefore focuses on the compute-intensive 

IR operations [2-4, 8] . Internet Explorer (IE) team [2] provided a 

breakdown of the CPU cycles consumed by the key IE subsystem, 

which focused on the computation of the browser. The network 

improvement is discussed separately and is not clearly included in 

the breakdown. Using call stack sampling for performance charac-

terization, the authors of [3, 8] threw out the network time in their 

analysis since their profiling method cannot capture the time spent 

idling. None of their methods capture the cost of resource loading 

or consider the concurrency of operation execution as discussed in 

Section 2.  In contrast, we will show that even when enterprise 

Ethernet is used, optimizing the IR operations will only lead to 

marginal overall improvement because resource loading contri-

butes most to the critical path in the browser delay on smartphones. 

Huang et al. [1] investigated smartphone browser performance 

mainly from the network perspective without looking into the in-

ternals of the browser. They quantified how the browser perfor-

mance is affected by network RTT, packet loss rate, concurrent 

TCP connection, and resource content compression, without an 

understanding of how the browser operates and interacts with 

smartphone OS and network. The authors, however, measured the 

browser performance with “the time between the first DNS packet 

and the last data packet containing the payload from the server”. 

This measurement will not accurately capture the user-perceived 

latency. First, it missed the latency of the browser initialization for 

the page before the first DNS packet out (typically around 200ms 

on G1) and all operation executions after the reception of the last 

packet, which can take up to 2 seconds according to our measure-

ment. Moreover, the authors approximated computing time by the 

browser with the TCP idle time, or periods having no network 

activity. This approximation will miss a significantly portion of 

computing time by the browser (up to 40% according to our obser-

vation) because many IR operation instances are executed in paral-

lel with network activities. We find that an accurate understanding 

 

Figure 1: The procedure of opening a webpage 

   
Figure 2: The percentages of mobile and non-mobile web page visited 

by each of the 25 iPhone 3GS users 
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of the browser delay absolutely requires an examination of the 

browser internals. 

4. Characterization Methodology 

To capture the user-perceived browser performance, we calcu-

late the browser delay as follows: the starting point is when the 

user hits the “GO” button of the browser to open an URL. The end 

point is when the browser completely presents the requested web-

page to the user, i.e., the browser’s page loading progress bar indi-

cates 100%. Such latency covers the time spent in all operations 

involved in opening a page, and can be unambiguously measured 

by keeping time-stamps in the browser code. We note that modern 

browsers utilize incremental rendering to display partially down-

loaded webpage to users. We do not consider partially displayed 

webpage as the metric because it is subjective how partial is 

enough to say the webpage is opened. 

Two questions are critical for in-depth understanding of the 

browser delay and potential optimizations: 1) how do various op-

erations collectively contribute to the browser delay; 2) what is the 

overall performance improvement if certain operations are accele-

rated. To answer these two questions, we employ two methods, 

called dependency timeline characterization and what-if analysis, 

described below. 

4.1 Dependency Timeline Characterization 

The dependency timeline graph for opening a webpage is a 

two-dimensional diagram that visualizes all operation instances, as 

shown in Figure 3. The dependency timeline graph reflects the 

temporal relations by arranging all operation instances along the X 

axis (i.e., the time axis). Furthermore, it organizes operation in-

stances into resource groups along the Y axis. In each resource 

group, the operation instances either load or process a common 

resource. Instances of Layout and Painting operations have their 

individual groups because they are not directly related to any re-

source. For example, Painting only consumes the most updated IR. 

Resource groups reveal important dependencies and concurrencies 

among operation instances. Within a group, an instance directly 

depends on its predecessor, as they have to be executed sequential-

ly. Additionally, a group, G, is dependent on an operation instance 

from another group if G’s resource is discovered by that instance.  

The dependency timeline graph visualizes both intra-group and 

inter-group dependencies: intra-group dependencies are shown 

along the same horizontal level; inter-group dependencies are indi-

cated by dashed lines. The graph provides two key insights into the 

browser performance. First, it offers the detailed latency break-

down at the operation-level, by including timestamps of important 

functions in all operation instances. Second, the dependencies 

serve as the foundation of the what-if analysis (Section 4.2). To the 

best of our knowledge, we are the first to visualize such dependen-

cies using real traces.  

To capture the dependency timeline, we added about 1200 

lines of code to 27 files of WebKit. For important functions in each 

operation, we log information including timestamp, function name, 

resource name, etc. For example, for each resource loading in-

stance, we log such information when the loading request is sche-

duled, sent out, the response is received, and the resource is 

loaded. All logs are kept as compact data structures in memory and 

only saved to the non-volatile storage after the page opening ends 

in order not to add any file I/O latency. After the experiment, we 

parse the log to construct the dependency timeline. We have veri-

fied that the instrumentation code contributes negligible latency 

(<1%) to the browser delay.  

The proposed dependency timeline is motivated by the time-

line panel [9] provided by WebKit [5]. However, the timeline pan-

el cannot provide the complete dependency relationship among 

different operation instances. Furthermore, it only works for desk-

top Safari and Chrome at the time of this writing.  

4.2 What-if Analysis 

The dependency timeline provides a solid foundation for us to 

answer an important question: what overall performance gain will 

be achieved if a browser operation is accelerated? Our technique is 

therefore called what-if analysis, which works as follows. To accu-

rately predict the impact of accelerating all instances of any opera-

tion, we scale the execution time of each instance of such an opera-

tion in the dependency timeline, and shift all its dependant opera-

tion instances to the left of the time axis (i.e. executed earlier). The 

dependency information provided by the dependency timeline 

determines how much an instance can be shifted. There are three 

cases: 

 If the shifted instance is not the beginning of a resource 

group, it can shift the same amount of time as its predecessor.  

 If the shifted instance is the beginning of a resource group and 

the group’s resource is discovered by another instance, the 

shifted instance can shift the same amount of time as the in-

stance that discovered the resource.  

 If the shifted instance is an IR-consuming operation (Layout 

or Paint), it will shift the same distance as the most recent IR-

producing operation instance does.  

5. Experimental Setup 

We next describe the experimental settings. 

Smartphone Platforms: We study two smartphones, Google 

Nexus One (N1) and HTC Dream (G1). We choose these two 

smartphones in order to see the impact of hardware because they 

have largely identical software configurations and are from the 

same original equipment manufacturer (OEM). N1 has a 1GHz 

Qualcomm Snapdragon Application Processor while G1 has a 

528MHz Qualcomm MSM7201A Application Processor. Both 

smartphones run identical software stacks: the Android 2.1 operat-

ing system with our instrumented WebKit.  

Network Conditions: We measure the browser delay under 

three types of networks: emulated enterprise Ethernet, typical 3G 

network, and emulated adverse network. To emulate enterprise 

Ethernet and adverse network, we reversely tether the smartphone 

through a dedicated gateway, an Ubuntu Linux laptop. The smart-

phone is connected to the gateway through USB; the gateway is 

connected to the 1Gbps Rice campus network. With this setup, all 

the network traffic of smartphone web browsing is forwarded by 

the gateway. Our measurement shows that the gateway itself has 

 
Figure 3: A simplified dependency timeline graph 
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negligible impact on the network performance: the average RTT 

between the smartphone and the gateway’s Ethernet interface is 

1ms; the forwarding bandwidth provided by the gateway is 

54Mbps, both of which are too good to be the limiting factors of 

the end-to-end network performance. The average RTT from the 

smartphone to top 10 mobile websites [10] is 23ms. To examine 

the impact of network RTT and throughput and emulate adverse 

networks, we control the gateway to add extra latency to the end-

to-end RTT and throttle the network bandwidth, using Linux Traf-

fic Control. To measure the browser performance with typical 3G 

networks, we use the 3G network service provided by T-mobile. In 

order to have a relatively consistent network condition, we always 

perform the measurements during the midnight and at the same 

location that sees a strong signal. The average RTT from the 

smartphone to top 10 mobile websites [10] is 276ms for the 3G 

network as we measure. 

Benchmark Webpages: We employ two sets of benchmark 

webpages. The mobile set includes the mobile versions of the 10 

most visited websites from mobile phones as reported in [10]. The 

non-mobile set consists of the 10 most visited non-mobile webpag-

es from 25 iPhone 3GS users in three months, collected from an 

ongoing field study reported in LiveLab [7]. These webpages were 

visited 2611 times during the three months.  

PageCycler: We implement a smartphone tool called Page-

Cycler to invoke the smartphone browser to visit the URLs in a 

given set one by one. PageCycler also utilizes tcpdump [11] on the 

smartphone to record the network traffic, e.g., TCP packets, when 

opening a page. According to our measurements, the overhead of 

tcpdump is negligible (<2% of CPU time and <0.4% of memory). 

6. Characterization Results 

We next present findings from the characterization study. Not 

surprisingly, mobile browsers are slow, even for mobile web pag-

es. Figure 4 presents the average browser delay on N1 and G1 

under three different network conditions for two benchmarks.  

(i) Mobile browsers are slow, especially for non-mobile web-

pages. Even with Ethernet, the average browser delay to open the 

non-mobile webpages on N1 is close to four seconds, far from that 

required for a smooth user experience.  

(ii) The browser delay is significantly shorter (~30%) on N1 

than G1, indicating that more powerful hardware does help. Yet 

how the hardware helps the performance is not as obvious as it 

may seem to be.  

In the rest of this section, we seek to answer three important 

questions: 1) What contribute to the browser delay? 2) Where can 

significant improvement come from? and 3) How does the hard-

ware difference between N1 and G1 make a difference in the 

browser delay? In order to answer the above questions, we next 

employ what-if analysis described in Section 4.2 to evaluate the 

impact of accelerating browser operations in various ways. Our 

results highlight the limitations of prior work on browser perfor-

mance characterization. 

6.1 IR Operations Do Not Matter Much 

Prior work on browser performance characterization and opti-

mization has suggested that optimizing some of the IR operations 

would be profitable because they are compute-intensive. For ex-

ample, the IE8 team [2] focused on Layout and Painting; the au-

thors of [3] focused on Layout; and the authors of [4] focused on 

Layout and Style. Their conclusions are based on counting the 

CPU usage by these operations, instead of how these operations 

contribute to the overall performance. In contrast, our what-if 

analysis reveals that improving these IR operations will only lead 

to marginal browser delay improvement.  

Figure 5 shows the what-if analysis of the mobile browser per-

formance for N1 under typical 3G networks. The X-axis is the 

speedup applies to the operation. The Y-axis is percentage im-

provement in the browser performance. We can clearly see that 

even with 32x speedup of Layout, Style, and Scripting, the browser 

performance will be improved by 0.4%, 0.2%, and 4%, respective-

ly. Note that 32x speedup would require significantly advancement 

in hardware and algorithm. For example, the new JavaScript en-

gine V8 [12] introduced in Android 2.2 can improve scripting by 

only 2-3x [13], resulting in 3% browser performance improvement 

according our analysis. This result also indicates that the Java-

Script benchmark used by [1] may not be representative of Java-

Script encountered by smartphone browsers in the field. With 

Ethernet, the overall improvement from speeding up computing is 

higher than that with 3G as expected. Yet the conclusions drawn 

using typical 3G networks still hold. With 32x speedup of Layout, 

Style and Scripting, the browser performance will be improved by 

2.0%, 1.4% and 8.4%, respectively. 

One may ask: will the profit only materialize when all the IR 

operations are accelerated due to concurrency? The answer is No. 

32x speedup of all five IR operations improves the browser per-

formance by 7% with 3G and by 23% with Ethernet. 32x speedup 

of all five IR operations plus the glue operation improves the 

browser performance by 8% with 3G and by 27% with Ethernet.  

6.2 Resource Loading Rules 

What-if analysis reported in Figure 5 demonstrates that the 

source of the browser performance problem is in resource loading: 

2x speedup of resource loading will improve the browser perfor-

 
Figure 4: Average browser delay for opening mobile and non-

mobile webpages on G1 and N1 through three different networks. 

Adverse network is emulated with 400ms injected delay in RTT and 

500Kbps/100Kbps downlink/uplink bandwidth [1] 

 

 

 

Figure 5: Browser performance improvement when speeding up 

various operations using 3G (N1) 
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mance by over 70%. Due to the importance of resource loading, 

we zoom into it with a series of measurements to understand it 

better. As described in Section 2, resource loading fetches a re-

source given its URL, either from the remote web server or from 

the local cache. In this process, resource loading uses services from 

the underlying network stack, e.g., resolving the domain name of 

the URL, handling HTTP URL redirection, establishing TCP con-

nections and so on. The first resource to load is usually the HTML 

document. Once a resource is loaded and parsed/scripted, the 

browser may discover new resources and will schedule the re-

quests to them according to their priorities (determined by the re-

source file type). Not surprisingly, opening a webpage may require 

loading multiple resources in series. This explains why resource 

loading is really important to the browser delay. 

Given the resources, the latency contribution from resource 

loading is determined by four factors: the network RTT, the net-

work bandwidth, resource loading procedure, and processing pow-

er available at the smartphone. We next examine how these four 

factors impact the overall browser delay. 

6.2.1 Network RTT and Bandwidth  

Using the Ethernet setup described in Section 5, we inject var-

ious RTT delays and set various bandwidth limits to emulate the 

impact by network RTT and bandwidth. While varying one of the 

two metrics, we fix the other to the typical value in the 3G network 

[1]: a RTT of 200ms, and a bandwidth of 1000Kbps downlink and 

200Kbps uplink. For RTT, we inject RTT from 0ms to 400ms. For 

downlink/uplink bandwidth, we set the limits from 250/50, 

500/100, 1000/200 to 1500/400, all in Kbps. Figure 6 presents the 

measurement results. 

We make the following observations. 

(i) Improving the bandwidth does not improve the browser de-

lay much after 1000/200Kbps for downlink/uplink, as shown in 

Figure 6. Therefore, current typical 3G networks can be considered 

as adequate since their throughputs are usually in this level or 

much higher [1]. This is not surprising because the size of all re-

sources for a webpage is usually a few hundred KB (160KB and 

770KB for mobile and non-mobile webpages, respectively), ac-

cording to our measurements. However, as webpages are likely to 

become richer and therefore come with larger resource files in the 

future, bandwidth improvement will certainly help. 

(ii) Network RTT is a key factor to the browser delay as also 

observed by the authors of [1]. As shown in Figure 6, the browser 

delay increases significantly when injected RTT increases from 

0ms (Ethernet) to 200ms (typical 3G) to 400ms (adverse 3G). The 

findings regarding the impacts by bandwidth and RTT imply that 

the browser delay difference between Ethernet and typical 3G, as 

shown in Figure 4, should be attributed to the difference in RTT 

rather than that in bandwidth.  

6.2.2 Resource Loading Procedure 

Resource loading procedure is how the browser loads the re-

sources needed when opening a webpage. Opening a webpage 

incurs loading multiple resources. On average, there are 21.8 re-

sources for mobile benchmark websites and 96.4 resources for 

non-mobile benchmark webpages. They are not fully parallelized 

due to the following loading procedure factors: (i) New resources 

can only be discovered while parsing a loaded resource, e.g., the 

main HTML file. (ii) Redirections on the main HTML file further 

delay the discovering time of later resources. (iii) If there are Java-

Scripts used, the parsing of the HTML file will be blocked until the 

JavaScripts have been executed. A side parser [14] can help in this 

situation, but it is not yet widely used. (iv) Finally, the limited 

number of concurrent TCP connections and sequential secure con-

nection (HTTPS) establishment further serialize the loading of 

multiple resources.  

The loading of each resource incurs multiple network round 

trips in series, due to redirection, DNS query, TCP connection 

establishment, creating secure connection (HTTPS) and download-

ing the resource file. Typically, each resource incurs 3 round trips 

for HTTP file and 5 round trips for HTTPS. The actual number of 

round trips varies according to the real situations, such as redirec-

tion, TCP slow start, domain name already resolved and TCP con-

nection reuse. Under current resource loading procedure, on aver-

age 18.6 round trips are incurred in series for opening top 10 mo-

bile websites and 27.2 round trips are incurred in series for top10 

non-mobile webpages. Such large numbers of round trips in series 

are the key reason that the network RTT matters very much to the 

browser delay, which was discussed in the previous section. 

6.2.3 Processing Power 

The resource loading time also depends on the processing 

power available at the smartphone since it involves network stack 

and OS service on the smartphone. A careful examination of the 

dependency timeline graphs reveals the three time intervals in 

resource loading in which N1 significantly outperform G1. Figure 

7 illustrates these three time intervals for mail.yahoo.com. 

(i) Time between a SendResourceRequest made by WebKit and 

when the resource’s corresponding request packet is sent out. 

The request packet can be a query packet for DNS lookup to 

resolve the domain name, a TCP SYN packet to establish the 

connection, or an HTTP GET packet to request the resource. 

During this time, necessary OS services and the network stack 

are invoked. The time is incurred at the beginning of the load-

ing of each resource. 

(ii) Time between when TCP connection for one resource is es-

tablished and when the HTTP GET is sent out. During this 

time, the OS notifies the browser when the connection is up, 

and the browser invokes the network stack to send out the 

HTTP request. This time is incurred for each round trip. 

(iii) Time spent to send a series of back-to-back requests for re-

source 2-5. During this time, the browser retrieves buffered 

requests and sends them out by invoking necessary OS ser-

vices (e.g. resolve the domain name, establish TCP connec-

tion, send packet, etc). This time is incurred when multiple re-

sources are requested at the same time. 

Apparently the time intervals of (ii) are much more frequent 

but shorter than those of (i). Figure 8 presents the time G1 and N1 

spent in opening mail.yahoo.com. N1 is much faster than G1. The 

loading time reduction is further amplified through multiple serial 

instances of resource loading when opening a webpage. The total 

 

 

Figure 6: Impact of bandwidth limitation and network RTT on 

browser delay for N1 (dashed lines) and G1 (solid lines) 
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time spent in the three intervals will be 1.1 seconds on average for 

N1 and 2 seconds for G1 when opening a mobile webpage.  

Based on the findings above, we conclude that more powerful 

hardware improves the browser delay mainly through faster OS 

services and network stack instead of faster browser IR operations. 

7. Discussions and Conclusions 

Our results show that lessons from the wired Web [2-4] are not 

broadly applicable. In particular, our characterization study sug-

gests the most effective way to improve the browser delay for the 

wireless Web is to either reduce resource loading time, in particu-

lar the network RTT, or hide its impact. To reduce network RTT, 

cloudlet [15] and data staging [16] can be employed to move web-

site contents to nearby servers.  

There are a few ways to hide the impact of resource loading. 

Speculative resource loading can parallelize the loading of mul-

tiple resources and reduce the impact from the network RTT. This 

is, however, a very challenging problem; since all needed re-

sources have to be preloaded to make the speculative loading ef-

fective. Any un-preloaded resource will be in the critical path and 

largely impact the overall performance. Making one mistake or 

missing a single resource in the preloading procedure could signif-

icantly impact the overall improvement. Speculative resource load-

ing is different from web prefetching [17], which downloads web-

pages likely to be accessed by the user in the future. On the other 

hand, as multicore processors are appearing on smartphones, their 

parallelism can be exploited for speculative resource loading. One 

core can be dedicated to “coarse-grain” parsing, which aims at 

getting the URLs of later resources instead of generating the DOM 

elements. This process should be light-weight and very fast. Thus, 

the resource requests can be sent out as early as possible. 

The loading of multiple resources can be batched in various 

ways to hide the resource loading time. For example, Google nor-

mally batches multiple pictures into one and send it to the browser 

directly. This eliminates multiple RTTs needed to get several pic-

tures. Furthermore, the batched loading can be supported by a 

proxy in the cloud in order to suppress the long RTT of the wire-

less first hop [18]. Finally, it can be supported by new ways of 

specifying webpage resources so that the browser can load re-

sources as soon as possible, such as Data URI scheme [19]. 
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Figure 7: Dependency timeline graph for opening mail.yahoo.com 

with Ethernet network condition on G1. (i) is incurred for each 

resource; (ii) is incurred for each network round trip; (iii) is in-

curred when multiple resources are requested at the same time. 

 
Figure 8: Time spent by G1 and N1 for three steps in resource 

loading 
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