
1

Why are Web Browsers Slow on Smartphones?

1
Zhen Wang,

2
Felix Xiaozhu Lin,

1,2
Lin Zhong, and

3
Mansoor Chishtie

1
Dept. of ECE and

2
Dept of CS, Rice University, Houston, TX 77005

3
Texas Instruments, Dallas, TX

ABSTRACT

We report the first work that examines the internals of web

browsers on smartphones, using the WebKit codebase, two genera-

tions of Android smartphones, and webpages visited by 25 smart-

phone users over three months. We make many surprising find-

ings. First, over half of the webpages visited by smartphone users

are not optimized for mobile devices. This highlights the impor-

tance of client-based optimization and the limitation of prior work

that only studies mobile webpages. Second, while prior work sug-

gests that several compute-intensive operations should be the focus

of optimization, our measurement and analysis show that their

improvement will only lead to marginal performance gain with

existing webpages. Furthermore, we find that resource loading,

ignored by all except one prior work, contributes most to the

browser delay. While our results agree with a recent network study

showing that network round-trip time is a major problem, we fur-

ther demonstrate how the internals of the browser and operating

system contribute to the browser delay and therefore reveal new

opportunities for optimization.

1. Introduction

As one of the most important applications on smartphones, the

web browser is known to be slow and often take seconds or tens of

seconds to open a page. Understanding why the browser is slow is

critical to its optimization. We are motivated by two recent re-

search endeavors. First, many have studied browsers on personal

computers and concluded that several key compute-intensive oper-

ations are the bottleneck [2-4]. On the other hand, a recent smart-

phone characterization study [1] demonstrated that the wireless

hop can significantly slow down the browser by its long round-trip

time (RTT). However, the authors took a black-box approach

without looking into the internals of the web browser, thereby

provided limited insights.

In this work, we examine the internals of web browsers on

smartphones with two novel methods. (i) We analyze webpages

visited by 25 iPhone 3GS users over three months. The analysis

reveals that over half of the webpages visited are not optimized for

mobile devices. Therefore, although mobile webpages do make

browsers faster, they are only half of the story. (ii) We are the first

to utilize two techniques to analyze the browser performance, de-

pendency timeline characterization and what-if analysis, based on

instrumenting the popular WebKit source code [5]. We are able to

truthfully capture the user-perceived delay of opening a webpage,

reveal the dependency and concurrency of browser operations, and

evaluate the impact of possible optimizations, which are impossi-

ble using techniques employed in prior work.

We make the following key findings. (i) Improvement on

compute-intensive operations suggested by prior work such as style

formatting, layout calculation [2-4], and JavaScript execution [1]

will lead to marginal improvement in browser performance on

smartphones. (ii) Instead, resource loading is the key to browser

performance on smartphones. Resource loading is the process that

resources, usually files of various types needed by opening a web-

page, are acquired by the smartphone from the web server. In con-

trast, prior work [2-4] assume resource loading contributes neglig-

ible delay, which is not true with smartphones. (iii) Given a re-

source, the delay of resource loading is determined by the network

condition, the browser loading procedure and the processing power

of the smartphone. Our results agree with the findings from [1] that

long network RTT is detrimental to the browser performance. We

further find that improvement in network bandwidth will not im-

prove browser performance much beyond typical 3G network.

Finally, by comparing the behaviors of two smartphones, Google

Nexus One (N1) and HTC Dream (G1), we observe a more power-

ful hardware, e.g. N1, will reduce the browser delay mainly by

accelerating OS services and network stack, instead of the com-

pute-intensive operations suggested by prior work.

Our findings not only shed light into the behavior of web

browsers on smartphones but also have important implications to

optimization. In particular, our work suggests that one should ag-

gressively seek to hide the network RTT and improve OS services

and network stack in order to improve resource loading, instead of

optimizing the compute-intensive browsers operations, such as

layout calculation, style formatting, and scripting suggested by

prior work [2-4].

The rest of the paper is organized as follows. Sections 2 and 3

provide the background for the web browser operations and dis-

cuss related work, respectively. Section 4 presents our characteri-

zation methodology, i.e., dependency timeline characterization and

what-if analysis. Section 5 describes our experimental setup and

Section 6 offers important findings. Section 7 discusses the impli-

cations of our findings to optimizing web browsers on smart-

phones.

2. Background

A modern browser is a very complicated piece of software. For

example, the WebKit source code in Android 2.1 has around one

million lines in over 5,700 files [5]. We next provide an architec-

tural overview of WebKit-based browsers.

When opening a page, the browser incrementally loads mul-

tiple web resources, builds an Internal Representation (IR) of mul-

tiple loaded resources, and converts the IR to the graphical repre-

sentation. A web resource is an individual unit of content or code

such as HTML documents, Cascading Style Sheets (CSS), pic-

tures, and JavaScrip files. Typically, an IR employs a set of tree

structures to record different information of hierarchical Document

Object Model (DOM) elements, which correspond to the various

HTML elements in the webpage such as paragraphs, images, and

form fields.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

HotMobile’11, March 1–2, 2011, Phoenix, Arizona, USA.

Copyright 2010 ACM 978-1-4503-0649-2/00/0010…$10.00.

2

The procedure of opening a page (illustrated by Figure 1) in-

volves a set of interdependent operations that can be dynamically

scheduled and concurrently executed. The operations can be classi-

fied into three categories. The first category includes resource

loading, which fetches a resource given its URL, either from the

remote web server or local cache. Resource loading uses services

from the underlying network stack, e.g., resolving the domain

name in the URL, handling HTTP URL redirection, establishing

TCP connections and so on. Given the resource, the latency of

resource loading is determined by the network RTT, network

bandwidth, browser loading procedure and the processing power.

The second category includes five IR operations that produce the

IR by processing loaded resources and consume the IR to render

the page. The five operations are HTMLParsing (or Parsing), Sty-

leFormatting (or Style), Scripting, Layout, and Painting. The first

three process HTML documents, style constraints (e.g., CSS), and

JavaScript, respectively, and attach results incrementally to the IR.

Layout computes and updates the screen locations of DOM ele-

ments based on the recently updated IR. Painting employs the IR

to generate the final graphical representation of the web page. Fi-

nally, all other processing incurred by the browser is treated as one

operation, called Glue operation, in this paper.

While it is tempting to think the first six operations described

above as a pipeline, three key properties of them make the page

opening procedure far more complicated than a pipeline. First,

when opening one webpage, an operation can be performed many

times. For example, it often takes multiple loading-processing

iterations over multiple resources to finish opening a web page.

This is because the browser discovers new resources while

processing loaded ones. Second, operations can be concurrently

executed. For example, there can be multiple instances of resource

loading on-going at the same time; in the meantime, they may

overlap with other operations such as Scripting and Layout. Third,

operations are dynamically scheduled. For example, with several

recent updates to the IR, the browser determines when to trigger a

Layout; the completion of loading a resource leads to its

processing, and the browser determines when to process; Parsing

encounters new URLs in a document, and the browser decides

whether to request them immediately or not.

2.1 Mobile Webs

Many web sites provide a mobile version of their pages in or-

der to better fit the content into and better support navigation on

the small screen [6]. In general, the mobile version of a webpage is

not as content-rich as the original one intended for personal com-

puters. Mobile webpages tend to have smaller CSS files and fewer

JavaScripts that lead to lighter workload for Style and Scripting.

While webpages optimized for mobile devices are usually fast-

er to open, we find that a significant portion of webpages visited

by smartphone users are not optimized for mobile devices, either

because the mobile versions are unavailable or the users purpose-

fully choose the non-mobile versions for their richer content. Using

the traces collected from 25 iPhone 3GS users over three months

[7], we found that over half (56%) of the pages visited were not

optimized for mobile devices, or non-mobile webpages, as illu-

strated in Figure 2. Therefore, our characterization will consider

both mobile and non-mobile web pages. In contrast, the only prior

work characterizing smartphone browsers mostly uses mobile

webpages [1].

The fact that over half of the webpages visited by smartphone

users are not optimized for mobile devices further highlights the

importance of client-based optimization, because many websites

will simply not provide an optimized mobile version and users

often prefer information-rich non-mobile pages.

3. Related Work

The performance of browsers has attracted quite a lot of inter-

ests from both industry and academia. Existing work, however, is

limited in both its scope and methods. Characterization work on

PC browsers assumes resource loading is negligible for PCs with

enterprise Ethernet and therefore focuses on the compute-intensive

IR operations [2-4, 8] . Internet Explorer (IE) team [2] provided a

breakdown of the CPU cycles consumed by the key IE subsystem,

which focused on the computation of the browser. The network

improvement is discussed separately and is not clearly included in

the breakdown. Using call stack sampling for performance charac-

terization, the authors of [3, 8] threw out the network time in their

analysis since their profiling method cannot capture the time spent

idling. None of their methods capture the cost of resource loading

or consider the concurrency of operation execution as discussed in

Section 2. In contrast, we will show that even when enterprise

Ethernet is used, optimizing the IR operations will only lead to

marginal overall improvement because resource loading contri-

butes most to the critical path in the browser delay on smartphones.

Huang et al. [1] investigated smartphone browser performance

mainly from the network perspective without looking into the in-

ternals of the browser. They quantified how the browser perfor-

mance is affected by network RTT, packet loss rate, concurrent

TCP connection, and resource content compression, without an

understanding of how the browser operates and interacts with

smartphone OS and network. The authors, however, measured the

browser performance with “the time between the first DNS packet

and the last data packet containing the payload from the server”.

This measurement will not accurately capture the user-perceived

latency. First, it missed the latency of the browser initialization for

the page before the first DNS packet out (typically around 200ms

on G1) and all operation executions after the reception of the last

packet, which can take up to 2 seconds according to our measure-

ment. Moreover, the authors approximated computing time by the

browser with the TCP idle time, or periods having no network

activity. This approximation will miss a significantly portion of

computing time by the browser (up to 40% according to our obser-

vation) because many IR operation instances are executed in paral-

lel with network activities. We find that an accurate understanding

Figure 1: The procedure of opening a webpage

Figure 2: The percentages of mobile and non-mobile web page visited

by each of the 25 iPhone 3GS users

Scripting

Style
Formatting

HTML
ParsingLoaded

resources
Update
IR

Layout

Graphics

Painting

New resources to load

Resource
Loading

Internal Representation (IR)

......

0%

50%

100%

1 2525 iPhone 3GS Users

Non-mobile webpages Mobile webpages

3

of the browser delay absolutely requires an examination of the

browser internals.

4. Characterization Methodology

To capture the user-perceived browser performance, we calcu-

late the browser delay as follows: the starting point is when the

user hits the “GO” button of the browser to open an URL. The end

point is when the browser completely presents the requested web-

page to the user, i.e., the browser’s page loading progress bar indi-

cates 100%. Such latency covers the time spent in all operations

involved in opening a page, and can be unambiguously measured

by keeping time-stamps in the browser code. We note that modern

browsers utilize incremental rendering to display partially down-

loaded webpage to users. We do not consider partially displayed

webpage as the metric because it is subjective how partial is

enough to say the webpage is opened.

Two questions are critical for in-depth understanding of the

browser delay and potential optimizations: 1) how do various op-

erations collectively contribute to the browser delay; 2) what is the

overall performance improvement if certain operations are accele-

rated. To answer these two questions, we employ two methods,

called dependency timeline characterization and what-if analysis,

described below.

4.1 Dependency Timeline Characterization

The dependency timeline graph for opening a webpage is a

two-dimensional diagram that visualizes all operation instances, as

shown in Figure 3. The dependency timeline graph reflects the

temporal relations by arranging all operation instances along the X

axis (i.e., the time axis). Furthermore, it organizes operation in-

stances into resource groups along the Y axis. In each resource

group, the operation instances either load or process a common

resource. Instances of Layout and Painting operations have their

individual groups because they are not directly related to any re-

source. For example, Painting only consumes the most updated IR.

Resource groups reveal important dependencies and concurrencies

among operation instances. Within a group, an instance directly

depends on its predecessor, as they have to be executed sequential-

ly. Additionally, a group, G, is dependent on an operation instance

from another group if G’s resource is discovered by that instance.

The dependency timeline graph visualizes both intra-group and

inter-group dependencies: intra-group dependencies are shown

along the same horizontal level; inter-group dependencies are indi-

cated by dashed lines. The graph provides two key insights into the

browser performance. First, it offers the detailed latency break-

down at the operation-level, by including timestamps of important

functions in all operation instances. Second, the dependencies

serve as the foundation of the what-if analysis (Section 4.2). To the

best of our knowledge, we are the first to visualize such dependen-

cies using real traces.

To capture the dependency timeline, we added about 1200

lines of code to 27 files of WebKit. For important functions in each

operation, we log information including timestamp, function name,

resource name, etc. For example, for each resource loading in-

stance, we log such information when the loading request is sche-

duled, sent out, the response is received, and the resource is

loaded. All logs are kept as compact data structures in memory and

only saved to the non-volatile storage after the page opening ends

in order not to add any file I/O latency. After the experiment, we

parse the log to construct the dependency timeline. We have veri-

fied that the instrumentation code contributes negligible latency

(<1%) to the browser delay.

The proposed dependency timeline is motivated by the time-

line panel [9] provided by WebKit [5]. However, the timeline pan-

el cannot provide the complete dependency relationship among

different operation instances. Furthermore, it only works for desk-

top Safari and Chrome at the time of this writing.

4.2 What-if Analysis

The dependency timeline provides a solid foundation for us to

answer an important question: what overall performance gain will

be achieved if a browser operation is accelerated? Our technique is

therefore called what-if analysis, which works as follows. To accu-

rately predict the impact of accelerating all instances of any opera-

tion, we scale the execution time of each instance of such an opera-

tion in the dependency timeline, and shift all its dependant opera-

tion instances to the left of the time axis (i.e. executed earlier). The

dependency information provided by the dependency timeline

determines how much an instance can be shifted. There are three

cases:

 If the shifted instance is not the beginning of a resource

group, it can shift the same amount of time as its predecessor.

 If the shifted instance is the beginning of a resource group and

the group’s resource is discovered by another instance, the

shifted instance can shift the same amount of time as the in-

stance that discovered the resource.

 If the shifted instance is an IR-consuming operation (Layout

or Paint), it will shift the same distance as the most recent IR-

producing operation instance does.

5. Experimental Setup

We next describe the experimental settings.

Smartphone Platforms: We study two smartphones, Google

Nexus One (N1) and HTC Dream (G1). We choose these two

smartphones in order to see the impact of hardware because they

have largely identical software configurations and are from the

same original equipment manufacturer (OEM). N1 has a 1GHz

Qualcomm Snapdragon Application Processor while G1 has a

528MHz Qualcomm MSM7201A Application Processor. Both

smartphones run identical software stacks: the Android 2.1 operat-

ing system with our instrumented WebKit.

Network Conditions: We measure the browser delay under

three types of networks: emulated enterprise Ethernet, typical 3G

network, and emulated adverse network. To emulate enterprise

Ethernet and adverse network, we reversely tether the smartphone

through a dedicated gateway, an Ubuntu Linux laptop. The smart-

phone is connected to the gateway through USB; the gateway is

connected to the 1Gbps Rice campus network. With this setup, all

the network traffic of smartphone web browsing is forwarded by

the gateway. Our measurement shows that the gateway itself has

Figure 3: A simplified dependency timeline graph

1

2

3

4

R
e

so
u

rc
e

G
ro

u
p

Elapsed time (ms)
0 1000 1500 2000 2500

5

inter-group dependency

Scripting

Layout

Resource Loading

Painting

Parsing

Style

4

negligible impact on the network performance: the average RTT

between the smartphone and the gateway’s Ethernet interface is

1ms; the forwarding bandwidth provided by the gateway is

54Mbps, both of which are too good to be the limiting factors of

the end-to-end network performance. The average RTT from the

smartphone to top 10 mobile websites [10] is 23ms. To examine

the impact of network RTT and throughput and emulate adverse

networks, we control the gateway to add extra latency to the end-

to-end RTT and throttle the network bandwidth, using Linux Traf-

fic Control. To measure the browser performance with typical 3G

networks, we use the 3G network service provided by T-mobile. In

order to have a relatively consistent network condition, we always

perform the measurements during the midnight and at the same

location that sees a strong signal. The average RTT from the

smartphone to top 10 mobile websites [10] is 276ms for the 3G

network as we measure.

Benchmark Webpages: We employ two sets of benchmark

webpages. The mobile set includes the mobile versions of the 10

most visited websites from mobile phones as reported in [10]. The

non-mobile set consists of the 10 most visited non-mobile webpag-

es from 25 iPhone 3GS users in three months, collected from an

ongoing field study reported in LiveLab [7]. These webpages were

visited 2611 times during the three months.

PageCycler: We implement a smartphone tool called Page-

Cycler to invoke the smartphone browser to visit the URLs in a

given set one by one. PageCycler also utilizes tcpdump [11] on the

smartphone to record the network traffic, e.g., TCP packets, when

opening a page. According to our measurements, the overhead of

tcpdump is negligible (<2% of CPU time and <0.4% of memory).

6. Characterization Results

We next present findings from the characterization study. Not

surprisingly, mobile browsers are slow, even for mobile web pag-

es. Figure 4 presents the average browser delay on N1 and G1

under three different network conditions for two benchmarks.

(i) Mobile browsers are slow, especially for non-mobile web-

pages. Even with Ethernet, the average browser delay to open the

non-mobile webpages on N1 is close to four seconds, far from that

required for a smooth user experience.

(ii) The browser delay is significantly shorter (~30%) on N1

than G1, indicating that more powerful hardware does help. Yet

how the hardware helps the performance is not as obvious as it

may seem to be.

In the rest of this section, we seek to answer three important

questions: 1) What contribute to the browser delay? 2) Where can

significant improvement come from? and 3) How does the hard-

ware difference between N1 and G1 make a difference in the

browser delay? In order to answer the above questions, we next

employ what-if analysis described in Section 4.2 to evaluate the

impact of accelerating browser operations in various ways. Our

results highlight the limitations of prior work on browser perfor-

mance characterization.

6.1 IR Operations Do Not Matter Much

Prior work on browser performance characterization and opti-

mization has suggested that optimizing some of the IR operations

would be profitable because they are compute-intensive. For ex-

ample, the IE8 team [2] focused on Layout and Painting; the au-

thors of [3] focused on Layout; and the authors of [4] focused on

Layout and Style. Their conclusions are based on counting the

CPU usage by these operations, instead of how these operations

contribute to the overall performance. In contrast, our what-if

analysis reveals that improving these IR operations will only lead

to marginal browser delay improvement.

Figure 5 shows the what-if analysis of the mobile browser per-

formance for N1 under typical 3G networks. The X-axis is the

speedup applies to the operation. The Y-axis is percentage im-

provement in the browser performance. We can clearly see that

even with 32x speedup of Layout, Style, and Scripting, the browser

performance will be improved by 0.4%, 0.2%, and 4%, respective-

ly. Note that 32x speedup would require significantly advancement

in hardware and algorithm. For example, the new JavaScript en-

gine V8 [12] introduced in Android 2.2 can improve scripting by

only 2-3x [13], resulting in 3% browser performance improvement

according our analysis. This result also indicates that the Java-

Script benchmark used by [1] may not be representative of Java-

Script encountered by smartphone browsers in the field. With

Ethernet, the overall improvement from speeding up computing is

higher than that with 3G as expected. Yet the conclusions drawn

using typical 3G networks still hold. With 32x speedup of Layout,

Style and Scripting, the browser performance will be improved by

2.0%, 1.4% and 8.4%, respectively.

One may ask: will the profit only materialize when all the IR

operations are accelerated due to concurrency? The answer is No.

32x speedup of all five IR operations improves the browser per-

formance by 7% with 3G and by 23% with Ethernet. 32x speedup

of all five IR operations plus the glue operation improves the

browser performance by 8% with 3G and by 27% with Ethernet.

6.2 Resource Loading Rules

What-if analysis reported in Figure 5 demonstrates that the

source of the browser performance problem is in resource loading:

2x speedup of resource loading will improve the browser perfor-

Figure 4: Average browser delay for opening mobile and non-

mobile webpages on G1 and N1 through three different networks.

Adverse network is emulated with 400ms injected delay in RTT and

500Kbps/100Kbps downlink/uplink bandwidth [1]

Figure 5: Browser performance improvement when speeding up

various operations using 3G (N1)

0

10

20

30

40

Ethernet 3G Adverse

D
e

la
y

(s
)

Mobile webpages

G1 N1

0

10

20

30

40

Ethernet 3G Adverse

Non-mobile webpages

G1 N1

Non-mobile webpage Mobile webpage

0%

2%

4%

1 32

Im
p

ro
ve

m
en

t

Speedup

Layout

0%

2%

4%

1 32
Speedup

Style

0%

2%

4%

1 32

Im
p

ro
ve

m
en

t

Speedup

Scripting

0%

300%

600%

1 32
Speedup

Resource Loading

5

mance by over 70%. Due to the importance of resource loading,

we zoom into it with a series of measurements to understand it

better. As described in Section 2, resource loading fetches a re-

source given its URL, either from the remote web server or from

the local cache. In this process, resource loading uses services from

the underlying network stack, e.g., resolving the domain name of

the URL, handling HTTP URL redirection, establishing TCP con-

nections and so on. The first resource to load is usually the HTML

document. Once a resource is loaded and parsed/scripted, the

browser may discover new resources and will schedule the re-

quests to them according to their priorities (determined by the re-

source file type). Not surprisingly, opening a webpage may require

loading multiple resources in series. This explains why resource

loading is really important to the browser delay.

Given the resources, the latency contribution from resource

loading is determined by four factors: the network RTT, the net-

work bandwidth, resource loading procedure, and processing pow-

er available at the smartphone. We next examine how these four

factors impact the overall browser delay.

6.2.1 Network RTT and Bandwidth

Using the Ethernet setup described in Section 5, we inject var-

ious RTT delays and set various bandwidth limits to emulate the

impact by network RTT and bandwidth. While varying one of the

two metrics, we fix the other to the typical value in the 3G network

[1]: a RTT of 200ms, and a bandwidth of 1000Kbps downlink and

200Kbps uplink. For RTT, we inject RTT from 0ms to 400ms. For

downlink/uplink bandwidth, we set the limits from 250/50,

500/100, 1000/200 to 1500/400, all in Kbps. Figure 6 presents the

measurement results.

We make the following observations.

(i) Improving the bandwidth does not improve the browser de-

lay much after 1000/200Kbps for downlink/uplink, as shown in

Figure 6. Therefore, current typical 3G networks can be considered

as adequate since their throughputs are usually in this level or

much higher [1]. This is not surprising because the size of all re-

sources for a webpage is usually a few hundred KB (160KB and

770KB for mobile and non-mobile webpages, respectively), ac-

cording to our measurements. However, as webpages are likely to

become richer and therefore come with larger resource files in the

future, bandwidth improvement will certainly help.

(ii) Network RTT is a key factor to the browser delay as also

observed by the authors of [1]. As shown in Figure 6, the browser

delay increases significantly when injected RTT increases from

0ms (Ethernet) to 200ms (typical 3G) to 400ms (adverse 3G). The

findings regarding the impacts by bandwidth and RTT imply that

the browser delay difference between Ethernet and typical 3G, as

shown in Figure 4, should be attributed to the difference in RTT

rather than that in bandwidth.

6.2.2 Resource Loading Procedure

Resource loading procedure is how the browser loads the re-

sources needed when opening a webpage. Opening a webpage

incurs loading multiple resources. On average, there are 21.8 re-

sources for mobile benchmark websites and 96.4 resources for

non-mobile benchmark webpages. They are not fully parallelized

due to the following loading procedure factors: (i) New resources

can only be discovered while parsing a loaded resource, e.g., the

main HTML file. (ii) Redirections on the main HTML file further

delay the discovering time of later resources. (iii) If there are Java-

Scripts used, the parsing of the HTML file will be blocked until the

JavaScripts have been executed. A side parser [14] can help in this

situation, but it is not yet widely used. (iv) Finally, the limited

number of concurrent TCP connections and sequential secure con-

nection (HTTPS) establishment further serialize the loading of

multiple resources.

The loading of each resource incurs multiple network round

trips in series, due to redirection, DNS query, TCP connection

establishment, creating secure connection (HTTPS) and download-

ing the resource file. Typically, each resource incurs 3 round trips

for HTTP file and 5 round trips for HTTPS. The actual number of

round trips varies according to the real situations, such as redirec-

tion, TCP slow start, domain name already resolved and TCP con-

nection reuse. Under current resource loading procedure, on aver-

age 18.6 round trips are incurred in series for opening top 10 mo-

bile websites and 27.2 round trips are incurred in series for top10

non-mobile webpages. Such large numbers of round trips in series

are the key reason that the network RTT matters very much to the

browser delay, which was discussed in the previous section.

6.2.3 Processing Power

The resource loading time also depends on the processing

power available at the smartphone since it involves network stack

and OS service on the smartphone. A careful examination of the

dependency timeline graphs reveals the three time intervals in

resource loading in which N1 significantly outperform G1. Figure

7 illustrates these three time intervals for mail.yahoo.com.

(i) Time between a SendResourceRequest made by WebKit and

when the resource’s corresponding request packet is sent out.

The request packet can be a query packet for DNS lookup to

resolve the domain name, a TCP SYN packet to establish the

connection, or an HTTP GET packet to request the resource.

During this time, necessary OS services and the network stack

are invoked. The time is incurred at the beginning of the load-

ing of each resource.

(ii) Time between when TCP connection for one resource is es-

tablished and when the HTTP GET is sent out. During this

time, the OS notifies the browser when the connection is up,

and the browser invokes the network stack to send out the

HTTP request. This time is incurred for each round trip.

(iii) Time spent to send a series of back-to-back requests for re-

source 2-5. During this time, the browser retrieves buffered

requests and sends them out by invoking necessary OS ser-

vices (e.g. resolve the domain name, establish TCP connec-

tion, send packet, etc). This time is incurred when multiple re-

sources are requested at the same time.

Apparently the time intervals of (ii) are much more frequent

but shorter than those of (i). Figure 8 presents the time G1 and N1

spent in opening mail.yahoo.com. N1 is much faster than G1. The

loading time reduction is further amplified through multiple serial

instances of resource loading when opening a webpage. The total

Figure 6: Impact of bandwidth limitation and network RTT on

browser delay for N1 (dashed lines) and G1 (solid lines)

G1 Non-mobile webpage G1 Mobile webpage
N1 Non-mobile webpage N1 Mobile webpage

0

10

20

30

250/50 500/100 1000/200 1500/400

D
e

la
y

(s
)

Bandwidth: Downlink/Uplink (Kbps)

0

10

20

30

0 200 400

Injected RTT (ms)

6

time spent in the three intervals will be 1.1 seconds on average for

N1 and 2 seconds for G1 when opening a mobile webpage.

Based on the findings above, we conclude that more powerful

hardware improves the browser delay mainly through faster OS

services and network stack instead of faster browser IR operations.

7. Discussions and Conclusions

Our results show that lessons from the wired Web [2-4] are not

broadly applicable. In particular, our characterization study sug-

gests the most effective way to improve the browser delay for the

wireless Web is to either reduce resource loading time, in particu-

lar the network RTT, or hide its impact. To reduce network RTT,

cloudlet [15] and data staging [16] can be employed to move web-

site contents to nearby servers.

There are a few ways to hide the impact of resource loading.

Speculative resource loading can parallelize the loading of mul-

tiple resources and reduce the impact from the network RTT. This

is, however, a very challenging problem; since all needed re-

sources have to be preloaded to make the speculative loading ef-

fective. Any un-preloaded resource will be in the critical path and

largely impact the overall performance. Making one mistake or

missing a single resource in the preloading procedure could signif-

icantly impact the overall improvement. Speculative resource load-

ing is different from web prefetching [17], which downloads web-

pages likely to be accessed by the user in the future. On the other

hand, as multicore processors are appearing on smartphones, their

parallelism can be exploited for speculative resource loading. One

core can be dedicated to “coarse-grain” parsing, which aims at

getting the URLs of later resources instead of generating the DOM

elements. This process should be light-weight and very fast. Thus,

the resource requests can be sent out as early as possible.

The loading of multiple resources can be batched in various

ways to hide the resource loading time. For example, Google nor-

mally batches multiple pictures into one and send it to the browser

directly. This eliminates multiple RTTs needed to get several pic-

tures. Furthermore, the batched loading can be supported by a

proxy in the cloud in order to suppress the long RTT of the wire-

less first hop [18]. Finally, it can be supported by new ways of

specifying webpage resources so that the browser can load re-

sources as soon as possible, such as Data URI scheme [19].

Acknowledgements

This work is supported in part by the Texas Instruments Lea-

dership University program and by NSF Awards #0803556 and

#0923479. The authors are grateful to the anonymous reviewers

and the paper shepherd, Dr. Bill Schilit, for their suggestions that

helped improve the final version.

References
[1] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl, "Ana-

tomizing application performance differences on smartphones," in
Proc. ACM/USENIX Int. Conf. Mobile Systems, Applications, and Ser-

vices (MobiSys) San Francisco, California, USA: ACM, 2010.

[2] C. Stockwell, "IE8 Performance,"
http://blogs.msdn.com/b/ie/archive/2008/08/26/ie8-performance.aspx,

2008.

[3] L. A. Meyerovich and R. Bodik, "Fast and parallel webpage layout," in
Proc. Int. Conf. World Wide Web (WWW) Raleigh, North Carolina,

USA: ACM, 2010.
[4] K. Zhang, L. Wang, A. Pan, and B. B. Zhu, "Smart caching for web

browsers," in Proc. Int. Conf. World Wide Web (WWW) Raleigh, North

Carolina, USA: ACM, 2010.
[5] WebKit, "The WebKit Open Source Project," http://webkit.org/.

[6] S. Shrestha, "Mobile web browsing: usability study," in Proc. Int.

Conf. Mobile Technology, Applications, and Systems and Int. Symp.
Computer Human Interaction in Mobile Technology Singapore: ACM,

2007.

[7] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum, "Live-
Lab: Measuring Wireless Networks and Smartphone Users in the

Field," in Proc. Workshop on Hot Topics in Measurement & Modeling

of Computer Systems, June 2010.
[8] C. Jones, R. Liu, L. Meyerovich, K. Asanovic, and R. Bodik, "Paralle-

lizing the Web Browser," in 1st USENIX Workshop on Hot Topics in

Parallelism, 2009.
[9] P. Feldman, "WebKit Timeline Panel,"

http://webkit.org/blog/1091/more-web-inspector-

updates/#timeline_panel.
[10] Nielsen.com, "Top mobiel phones, sites and brands for 2009,"

http://blog.nielsen.com/nielsenwire/online_mobile/top-mobile-phones-

sites-and-brands-for-2009/, 2009.
[11] TCPDUMP: http://www.tcpdump.org/.

[12] Google, "V8 JavaScript Engine," http://code.google.com/p/v8/.

[13] Google Android, "Android 2.2 Platform Highlights,"
http://developer.android.com/sdk/android-2.2-highlights.html.

[14] A. Koivisto, "Optimizing Page Loading in the Web Browser,"

http://webkit.org/blog/166/optimizing-page-loading-in-web-browser/.
[15] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, "The Case for

VM-Based Cloudlets in Mobile Computing," IEEE Pervasive Compu-

ting, vol. 8, pp. 14-23, 2009.
[16] J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanaryanan, "Data

Staging on Untrusted Surrogates," in Proceedings of the 2nd USENIX

Conference on File and Storage Technologies San Francisco, CA:
USENIX Association, 2003.

[17] V. N. Padmanabhan and J. C. Mogul, "Using predictive prefetching to

improve World Wide Web latency," SIGCOMM Comput. Commun.
Rev., vol. 26, pp. 22-36, 1996.

[18] Skyfire: http://www.skyfire.com/.

[19] L. Masinter, "The "data" URL scheme,"
http://tools.ietf.org/html/rfc2397, 1998.

Figure 7: Dependency timeline graph for opening mail.yahoo.com

with Ethernet network condition on G1. (i) is incurred for each

resource; (ii) is incurred for each network round trip; (iii) is in-

curred when multiple resources are requested at the same time.

Figure 8: Time spent by G1 and N1 for three steps in resource

loading

Elapsed time (ms)

1

2

3

4R
e

so
u

rc
e

G
ro

u
p

0 1000 1500 2000 2500 3000

5

(i) (ii) (iii)

6

7

8

9

DNS
lookup
query

redirection

TCP
connection
established

HTTP GET
sent out

Scripting

Layout

Resource Loading

Painting

Parsing

Style

0

50

100

150

(i) (ii) (iii)

Ti
m

e
 (

m
s)

Step in Resource Loading

G1 N1

http://blogs.msdn.com/b/ie/archive/2008/08/26/ie8-performance.aspx
http://webkit.org/
http://webkit.org/blog/1091/more-web-inspector-updates/#timeline_panel
http://webkit.org/blog/1091/more-web-inspector-updates/#timeline_panel
http://blog.nielsen.com/nielsenwire/online_mobile/top-mobile-phones-sites-and-brands-for-2009/
http://blog.nielsen.com/nielsenwire/online_mobile/top-mobile-phones-sites-and-brands-for-2009/
http://www.tcpdump.org/
http://code.google.com/p/v8/
http://developer.android.com/sdk/android-2.2-highlights.html
http://webkit.org/blog/166/optimizing-page-loading-in-web-browser/
http://www.skyfire.com/
http://tools.ietf.org/html/rfc2397

