
Practical Urban Localization for Mobile AR
Tiantu Xu∗
Purdue ECE

Guohui Wang
ByteDance

Felix Xiaozhu Lin
Purdue ECE

ABSTRACT
Emerging mobile apps render AR effects based on the places of
interest (POI) that a user is currently in. To obtain the needed POI
labels and a smartphone’s camera position and orientation, such
apps demand inexpensive localization. Yet, existing localization so-
lutions either work poorly in urban areas or require expensive data
collection. To this end, we advocate for an inexpensive, practical
localization pipeline by integrating commodity vision operators.
To instantiate the pipeline, we propose a system with three key
designs: the cloud indexes image features as a forest rather than a
monolithic tree; smartphones incrementally prefetch image features
for on-device matching rather than uploading features to the cloud;
smartphones tune the camera positioning algorithm dynamically
based on its physical environment. Our preliminary results show
that these designs can reduce the cost of image data collection by
up to three orders of magnitude, reduce user-perceived delays, and
scale to diverse AR resource demands and environments.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Information systems→ Image search; Personaliza-
tion.

KEYWORDS
Mobile Augmented Reality; Urban Localization
ACM Reference Format:
Tiantu Xu, Guohui Wang, and Felix Xiaozhu Lin. 2020. Practical Urban
Localization for Mobile AR. In Proceedings of the 21st International Workshop
on Mobile Computing Systems and Applications (HotMobile ’20), March 3–4,
2020, Austin, TX, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3376897.3377855

1 INTRODUCTION
Places of interest (POI) apps render AR effects on-the-fly based on
a smartphone’s location and position. Integrated into video sharing
apps such as TikTok, POI AR opens a new door to deliver relevant
advertisements. For instance, while a user uses her smartphone
to shoot a short video in front of a coffee shop, the smartphone
renders coffee promotions as a virtual overlay on the screen. Of
such POI AR apps: i) the typical scenarios are urban canyons where
merchants proliferate; ii) the AR effects are specific to the exact
∗This work was performed during an internship at ByteDance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotMobile ’20, March 3–4, 2020, Austin, TX, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7116-2/20/03. . . $15.00
https://doi.org/10.1145/3376897.3377855

AR Type Localization Error Per-frame Delay
Marker-based ∼ a few meters ∼1s
Markerless < 1 meter tens of ms (real-time)
Superimposition < 10 centimeters tens of ms (real-time)
Table 1: Tolerance of localization errors/delays of AR

GPS Wi-Fi 3D Model This work

Environment Open
Outdoor Indoor Indoor &

Outdoor
Indoor &
Outdoor

Error High Low Low Low
Position 3DoF 3DoF 6DoF 6DoF
Ahead-of-time cost Low Low High Low
Runtime cost Low Low Low Low

Table 2: A comparison of localization solutions

camera location and position; iii) the effects are interactive and
continuously rendered in realtime as the camera moves. Table 1
summarizes three classes of POI AR with a variety of visual effects
and resource demands. These classes are Marker-based: AR effects
are overlaid on known physical objects, i.e., markers; Markerless:
AR effects are rendered in free space, e.g., an interactive 3D Medusa
in front of a Starbucks shop; Superimposition: AR effects provide an
alternate view of an object, e.g., a virtual overlay aligned on a wall.

This paper explores localization customized for POI AR in ur-
ban areas. To POI AR, the localization system supplies twofold
information, as shown in Table 2: a POI label describing the user’s
current geolocation, e.g., “the Starbucks on Main Street”; the six
degrees of freedom (6DoF) camera pose consisting of camera po-
sition (X, Y, Z) and orientation (yaw, pitch, roll). The localization
system should meet the following objectives. i) Low-cost data collec-
tion in constructing geo-visual databases that cover urban areas; ii)
Soft real-time camera positioning with tens of ms delay for smooth
user experiences; iii) Privacy: the smartphone should avoid up-
loading visual data whenever possible; iv) Proportional cost: the
system should incur low computational cost when the AR’s error
and latency requirements are relaxed, as listed in Table 1.

Most well-known localization techniques are inadequate for POI
AR. First, their positioning errors exceed the tolerance of POI la-
bels, especially in the urban outdoor environment. GPS sees errors
as high as 30 meters in urban canyons due to obstruction [4, 15];
even calibrated with inertial sensors, the error is still around 10 me-
ters [4, 5]. Although recent peer-assisted or multipath WiFi-based
localization [16, 17] achieves centimeter-level errors, the techniques
are restricted to indoor settings. More importantly, neither GPS nor
WiFi can estimate 6DoF camera poses. Although fusing 3DoF WiFi
localization and 3DoF orientation estimation, e.g., from gyroscopes,
was reported effective, the technique is mostly limited to indoor
environments [1].

Session 2: Mobile Sensing and Analysis HotMobile ’20, March 3–4, 2020, Austin, TX, USA

27

https://doi.org/10.1145/3376897.3377855
https://doi.org/10.1145/3376897.3377855
https://doi.org/10.1145/3376897.3377855

By contrast, vision-based approaches show a higher promise [36].
Among them, 3D model reconstruction is commonly used in com-
mercial solutions [24, 25, 29, 32]: with reference to a colossal, pre-
generated 3D point cloud, smartphones can estimate location and
position with cm-level accuracy [32]. Yet, generating 3D models
requires as many as a few thousand images collected for each build-
ing [27]. For POI AR, constructing 3D models for an entire urban
area is unscalable.

To this end, we propose to construct an inexpensive localization
pipeline with two vision algorithms in tandem: image featurematch-
ing [21, 26] and simultaneous localization and mapping (SLAM). As
shown in Figure 1, the system vendor collects a moderate number
of images covering the urban area, typically tens per POI, ahead
of time; from the images, the vendor extracts and indexes visual
features in K-D Trees called vocabulary trees [21, 26]. When a user
starts a POI AR app, her smartphone identifies its current location
by matching features extracted from the camera video feed with
the features stored in the vocabulary tree, continuously estimates
camera pose using SLAM, and renders AR effects accordingly.

To instantiate the pipeline spanning the smartphones and the
cloud, we present three key system designs, as illustrated in Figure 1.
Indexing image features as a vocabulary forest (§3.1) While
prior work typically constructs one vocabulary tree covering all
POIs [26], doing so for the entire urban area results in a deep,
monolithic tree that is expensive to search into. To this end, we
build a vocabulary forest consisting of numerous shallow trees, each
covering a region as large as GPS’s typical error region, e.g., a circle
with a ∼30 m radius. Smaller coverage not only reduces the delay
in feature search but also reduces false positives, as will be shown
in Section 4.
Incremental tree prefetch (§3.2) While smartphones may up-
load image features to the cloud for matching against the features
stored in the vocabulary trees, doing so raises privacy concerns
over the uploaded visual data. As such, we propose for smartphones
to fetch the vocabulary forest to execute matching solely on the de-
vices. As the whole forest can be colossal (e.g., that for a small town
like Palo Alto is more than 50 GB [26]), the smartphone fetches
incrementally: it fetches the tress for the geo-regions that the user
is about to enter, determined based on the current smartphone GPS
location and the predicted trajectory. In prefetch, the smartphone
prioritizes the trees that cover more popular POIs and have larger
overlaps with the GPS’s error region.
Adapting camera positioning to diverse environments (§3.3)
For camera positioning, we exploit the rich tradeoffs between AR
errors and delays. Accordingly, the system tunes SLAM parameters,
e.g., video resolution, frame rate, and the number of per-frame SIFT
features [19], on the fly. The system further adapts its positioning
algorithm to diverse environments that challenge positioning accu-
racy. For instance, while SIFT features are often detected on object
boundary edges, they become inadequate on smooth and distinctive
building textures [33]. In this case, the system automatically boosts
image resolution or frame rate to prevent potential accuracy loss.

Overall, this paper advocates for deep customization of localiza-
tion for mobile AR applications, which serves as a stepping stone
towards making POI AR deployable on billions of smartphones and
affordable in thousands of urban areas.

2 A CASE FOR CUSTOMIZING
LOCALIZATION FOR POI AR

2.1 Observations
We summarized a few observations that motivate our key design
choices below.
Observation 1. Constructing geo-visual databases is signifi-
cantly cheaper than 3D models Constructing a geo-visual data-
base requires fewer images, and consumes fewer compute and
storage resources of up to three orders of magnitude compared
to reconstructing the entire 3D city model that has been carried
out by industrial pioneers [24, 25, 29, 32]. Narrowing down the
scenarios to POI AR applications, 3D model reconstruction is an
overkill. We made a head-to-head cost comparison between the
above two approaches on several stores on the University Avenue
in Palo Alto, a small town in CA, as will be shown in Section 4.
Observation 2. Smaller tree coverage speeds up imagematch-
ing and reduces the false positive rate Smaller region coverage
corresponds to fewer images and fewer features, so that the vo-
cabulary tree size could be significantly smaller, resulting in faster
image feature searching and matching. Besides, smaller coverage
also effectively reduces the number of POI label candidates, which
often ends up with a higher top-1 accuracy during image matching.
A measurement of the image matching speed and accuracy over a
different range of coverage will be shown in Section 4.
Observation 3. Uploading images to the cloud leaks privacy
Privacy is always a top concern, especially for location-based ser-
vices involving sensitive private data. However, prior AR work [15,
31] that uploads the user’s camera images to the cloud may in-
cur the risk of data leakage threats. The attacks may come from
malicious public WiFi [35], untrusted cloud [2], or side-channel
attacks [37]. The above privacy issue motivates our design choice
of blinding the cloud by fetching the vocabulary trees to the user’s
smartphone for on-device matching.
Observation 4. SLAM parameters are tunable to adapt to dif-
ferent AR types and various environments The accuracy of
camera positioning varies with input video formats, e.g., resolution,
frame rate, and SLAM parameters, such as the number of features
extracted per frame. This tradeoff caters to the diverse accuracy
requirements from different AR types shown in Table 1, which
motivates our design of choosing a different set of parameter values
corresponding to each AR type. Besides, under some special con-
ditions, e.g., much fewer features could be extracted from smooth
building textures, SLAM is elastic in preventing dramatic accuracy
drops by consuming more expensive video formats. We emulate
different conditions by benchmarking SLAM [20] on real-world
datasets [30], and more details will be shown in Section 4.

2.2 System Overview
With the above observations, we advocate for a practical urban lo-
calization system for mobile POI AR applications, with the proposed
pipeline shown in Figure 1. Figure 1(a) illustrates the ahead-of-time
vocabulary forest construction, composed by data collection and
geo-visual database construction. During the data collection stage,
the system vendor collects image features from real street scenes.

Session 2: Mobile Sensing and Analysis HotMobile ’20, March 3–4, 2020, Austin, TX, USA

28

Cloud DB Storage

Adaptable
6DoF Camera

Positioning (§3.3)

AR Rendering
Engine

Visual Data
Collection (§3.1)

Vocabulary Forest
Generation (§3.1)

Database
Construction (§3.1)

Geo-visual DB
ConstructionData Collection

User Trajectory
Prediction (§3.2)

Prefetcher Place Recognition
Engine

Tree Prefetch
Prioritization (§3.2)

Outlier
Removal (§3.1)

Frame i

Frame i+1
Place Recognition
by Image Feature
Matching (§3.2)

(a) Ahead-of-time Construction on the Cloud (b) Runtime AR Rendering on the Smartphone

Figure 1: Proposed System

Irrelevant features from random dynamic entities, e.g., persons or
automobiles that happen to pass by, are detected by general object
detectors, e.g., YOLO [23], and are removed from the image ahead
of time. With the image collected and outliers from irrelevant enti-
ties removed, the system vendor constructs numerous vocabulary
trees from each group of images covering an independent region.
Eventually, all those vocabulary trees are stored on the cloud server.
Figure 1(b) illustrates a single life cycle of AR effect rendering on
smartphones, which breaks down into vocabulary tree prefetch,
on-device POI recognition, and adaptable camera positioning. To
reduce the end-to-end latency, the smartphone will run a prefetcher
that continuously pulls nearby the vocabulary trees prioritized by
the user’s current GPS location and predicted trajectory. Upon
the app launch, the recognition engine on the smartphone will
match the features extracted from the current camera view with
pre-downloaded features from vocabulary trees. With the POI label
returned by picking the top match, the user then picks up her fa-
vorite POI AR effect related to the current POI. The AR rendering
engine then continuously updates the AR model pose by estimating
the 6DoF camera pose on each frame through SLAM, which can
adapt to various AR types and environments.

3 DESIGN
We next describe the three key aspects of our system design, as
shown in Figure 1.

3.1 Indexing Features as Vocabulary Forest
Despite the fact that a single vocabulary tree can scale up to 1M
images [21], for both latency- and privacy-sensitive applications,
we seek to enforce the latency cap by shrinking the vocabulary size
to match the GPS error bound (30m), motivated by observation 2 in
Section 2.1. We propose to construct a vocabulary forest that covers
the entire urban area with numerous shallow vocabulary trees,
with each tree covering an independent region. Doing so has the
following benefits compared to constructing a monolithic tree that
covers the entire urban area. First, it significantly reduces the search
latency, as the tree size goes down monotonically with the tree
coverage size. Second, finer-grained segmentation in tree coverage
effectively removes false positives in image matching, as will be
shown in Section 4. Third, unifying the vocabulary tree coverage
enables stable content transmission and computation across all
regions, as compared to arbitrary segmentation, e.g., the shopping
mall [15] or the entire street. Constructing a vocabulary forest ahead

of time is the prerequisite of runtime on-device image matching
and AR effects rendering, which consists of the following steps.
Image collection The image matching accuracy highly depends
on the collection of visual data. For example, the user’s camera could
locate at either the left-hand side or right-hand side and could be
close or far from the building wall. As a result, those differences in
user’s camera positions can incur distortions or occlusions on the
building. In conclusion, the images collected should cover multiple
angles and distances that the user’s camera could position [26].
Empirically, to our best knowledge, collecting around ten images
for one-side of the building is sufficient, and it can derive a higher
than 90% top-1 accuracy out of nine POI candidates, as will be
shown in our preliminary results in Section 4.
Outlier removal Typically, the street view images collected often
contain irrelevant objects in dynamic environments, e.g., persons
and automobiles passing by, and thus will usually incur a negative
impact on image matching accuracy. To remove such impacts, the
system could make full uses of existing state-of-the-art general
object detectors, e.g., YOLO [23], to peel off the outlier features from
irrelevant entities after the street images collection. Besides, the
outlier removal also respects the privacy of persons or automobiles
being captured during data collection [38], which may contain
sensitive information such as human faces and car license plates.
Vocabulary forest and database construction On the cloud
server, the system vendor constructs a geo-visual database that
relates the geolocation with the image features. With the image
collected and outliers removed, the system vendor groups the image
collections based on geolocations, extracts per tree coverage image
features, and constructs the vocabulary trees corresponding to
each GPS range. During online image matching, the relevance of
the camera image and the database image is determined by the
similarity of the feature search paths down the vocabulary tree
from two images [7, 21], and the database image with the highest
relevance score is considered as the topmatch. Upon finding the best
match with the smartphone’s input image, the system will derive
the POI label, e.g., the Starbucks on Main Street, as a reference for
related POI AR effects, e.g., a virtual overlay aligned on a wall with
current coffee promotions, for the user.
Database maintenance In the real world, outdoor environments
change sporadically in urban areas. The system vendor needs to
regularly update the POI information and corresponding image fea-
tures in the database. Furthermore, computer vision algorithms are
usually sensitive to the variation of seasons, weather, and lighting

Session 2: Mobile Sensing and Analysis HotMobile ’20, March 3–4, 2020, Austin, TX, USA

29

conditions, calling for more diverse image feature collections under
different conditions.

3.2 Incremental Tree Prefetch
Prefetching all nearby vocabulary trees may incur meaningless
network resource waste, e.g., vocabulary trees downloaded are
never queried later. To reduce unnecessary network traffics, we
propose to prioritize the prefetch sequence and predict the user
trajectory.
Prioritizing prefetch We propose to prioritize the prefetch se-
quence based-on the overlapping region size between the GPS error
range and nearby tree coverage. Due to the uncertainty of GPS
positioning in urban areas, the exact user location could be within
a circle with a radius of nearly 30m, the GPS error range in urban
areas reported in prior work [4, 15]. As a result, the error circle
will overlap with the nearby tree coverage by different sizes. The
system prioritizes the tree prefetch by downloading the trees that
have more overlapped region with the GPS error circle, i.e., the
user is more likely to appear in this region, and ignores the trees
with overlapped regions smaller than a pre-defined threshold, e.g.,
10%, indicating that the user is less likely to appear in that region
without further movements.
Predicting user trajectory We propose to prefetch the vocab-
ulary tree by predicting the short-term user trajectory based on
the crowdsourced digital footprints. In densely populated urban
areas, users enjoy sharing their digital footprints on social media
while visiting different places of interest [34]. The POI AR effects
are easy to go viral on short video sharing apps like TikTok and
thus attract more and more users to visit. The system prioritizes
the tree prefetch by downloading the trees covering more popular
POIs.
Adaptive tree replacement Continuous vocabulary tree down-
loads stress the device storage space, and we propose to replace the
downloaded trees based-on the Least Recently Used (LRU) policy.
The system caches the trees with more frequent recent visits and
removes the trees that have not been visited for a long time. It not
only avoids repetitive downloads but also effectively removes the
contents that are unlikely to be queried in the near future.

3.3 Adaptable Camera Positioning
We propose to utilize domain knowledge to provide smoother AR
effects and user experiences towards various AR types under differ-
ent real-world environments. As mentioned in prior sections, there
are a set of parameters that could be tuned, e.g., the video resolution,
the frame rate, and the number of features per frame, and different
choices of parameter values will result in different positioning accu-
racy and latency. The above parameters have different impacts on
the positioning accuracy. For example, for two consecutive frames,
more extracted feature points rectify false correspondences, and
a higher sampling rate smooths camera movements and avoids
dramatic shifts of correspondent feature points, both contribute to
higher positioning accuracy.
Adaptation to different types of AR We propose to explore the
trade-off space by profiling the positioning accuracy and latency
under different set of knob values to meet the requirement of each

Methods No. Images Generation time Storage cost
Geo-visual ∼ 100K [26] ∼ 12s/building ∼ 0.1MB/building
3D City ∼ 10M [27] ∼ 4hrs/building ∼ 2MB/building
Ratio ∼ 1:100 ∼ 1:1200 ∼ 1:20

Table 3: A head-to-head comparison of constructing a geo-
visual database vs a 3D city model. The former incurs signif-
icantly lower cost than the latter.

AR type, as shown in Table 1. Upon recognizing the POI, the system
picks up a set of parameter values profiled ahead-of-time, catering
to a specific AR type. For example, for markerless AR that renders
an interactive 3D object in free space, the accuracy required is
∼1m, so that SLAM could relax the parameter values to support
smoother 3D object rotations and movements; for superimposi-
tion AR that provides an alternate view of an entity, the system
should choose higher parameter values to control the error within
a few centimeters and naturally align the AR object with real-world
entities.
Adaptation to various environments Under real-world envi-
ronments, the conditions sometimes could be unpredictable, e.g.,
the building texture or the camera moving speed. We propose to
adapt the camera pose estimation to various environments automat-
ically to meet the accuracy and latency goals. For example, upon
detecting a dramatic drop in the number of feature points detected,
the system automatically boosts the image resolution or the frame
rate to offset the potential accuracy loss. Due to the elasticity of
SLAM, as will be shown in Section 4, the positioning accuracy only
drops slightly with higher image resolutions and frame rates, even
if the number of feature points drops 40%.

4 PRELIMINARY RESULTS
We carried out several preliminary experiments that validate our
key designs. The measurements are benchmarked by a few well-
known computer vision libraries, including DBoW2 [7]: a vocabu-
lary tree library; ORB_SLAM2 [20]: a real-time SLAM library; and
colmap [27]: a general-purpose 3D reconstruction pipeline.
Ahead-of-time construction cost comparison Vocabulary for-
est construction is significantly cheaper than the 3D city model
reconstruction, as shown in Table 3. For example, constructing the
geo-visual database for a small town like Palo Alto in CA (≈ 26
miles2) needs roughly 100K images [26]. On the contrary, construct-
ing a 3D model for a single building requires ∼2K images taken
from different relevant locations and angles [27]. To reconstruct
3D Palo Alto, the total number of images could easily go up to
10M [8], ∼100× more efforts in data acquisition. With sufficient
images, the construction time for a single 3D building takes another
four hours [27], nearly 1200× more expensive than constructing
vocabulary trees. 3D reconstruction also incurs 20× more storage
costs by storing RGB-D voxels [27] compared to feature vectors [19].

Vocabulary forest vs monolithic tree Smaller tree coverage
speeds up image matching and reduces false positive rates. We
collected our micro dataset on eleven stores (∼100m) on University
Avenue, Palo Alto, CA, and each store has around ten photos taken

Session 2: Mobile Sensing and Analysis HotMobile ’20, March 3–4, 2020, Austin, TX, USA

30

0.6

0.7

0.8

0.9

1

4 6 9 11
0

0.5

1

1.5

Search Latency (X)
Accuracy (%)

Se
ar

ch
La

te
nc

y
(X

)

To
p-

1
A

cc
ur

ac
y

(%
)

Number of stores covered

0.8

0.85

0.9

0.95

1

Fewer
Features

Higher
Speed

w/o Adaptation
w/ Adaptation

A
cc

ur
ac

y
(%

)
(a) Larger tree coverage incurs extra
search overhead and accuracy drop.

(b) SLAM preserves high accuracy
with the adaptation of parameters
under different environments.

Figure 2: Preliminary Results

from different relative locations and angles. In the evaluation, every
single image is excluded from the entire dataset once for cross-
validation. We set the tree depth (L) as 5, and varies branching
factor (K) between 9-11 to fit the image numbers in each coverage
(∼2000 features per image, kL total leaf nodes [26]). As shown in
Figure 2(a), by enlarging the coverage from 4 stores (30m) to 11
stores (100m), the search latency goes up more than 40%, while the
top-1 image matching accuracy drops from 0.93 to 0.82.
Prefetch can save up to a few seconds Transferring visual data
on-the-fly incurs significant extra overhead. As a result, under the
typical network bandwidths1 provided by the measurement results
from prior work [10, 13, 28], downloading a monolithic vocabulary
tree with tens of GB will completely ruin user experiences. By
confining the vocabulary tree coverage to the GPS error range
(∼30m), the tree size is nearly 1MB, and downloading these trees
only incurs 1.01s and 1.2s overhead under the typical LTE and WiFi
network bandwidths, respectively.
Adaptable camera positioning SLAM can adapt to diverse en-
vironments. We emulate different real-world environments on The
KITTI Vision Benchmark Suite [30], whose video data is captured
with resolution of 1241×376 at the frame rate of 10 by a monocular
visual odometry. The positioning results measured on the high-
est parameter values provided by the dataset is considered as the
ground truth. We picked the resolution of 930×282 (resized to 75%),
the frame rate of 6, and the feature number of 1.5K per image as our
test setup. For example, as shown in Figure 2(b), assume that the
feature points extracted drops 40% on smooth building textures, the
measured positioning accuracy drops 9.6%. In this case, raising the
camera capturing resolution to 1241×376 will promote the position-
ing accuracy to 98.0%. Another example is a user moving in a 3×
faster speed, i.e., missing 2 frames in every 3 frames compared to
the default test setup. As a result, the positioning accuracy drops 4%.
Accordingly, elevating the resolution to 1241×376 and extracting
500 more feature points on each frame will promote the positioning
accuracy to 98.5%. Co-tuning above parameter values still performs
real-time camera pose estimation.

1WiFi: downlink 7040kbps, RTT 50ms; LTE: downlink 9185kbps, RTT 70ms.

5 RELATEDWORK
Assisting GPS with various inertial sensors Prior work has
proposed several hybrid approaches to enhance outdoor GPS accu-
racy by utilizing low-power inertial sensors [4, 5]. However, they
still incur significant errors and are unable to support POI AR.
WiFi-based localization [16, 17] achieves centimeter-level errors,
but this technique is unable to derive real-time 6DoF camera posi-
tions. Although fusing 3DoFWiFi localization and 3DoF orientation
estimation from gyroscopes is practical [1], the technique is mostly
limited to indoor environments.
Image feature-based place recognition City-scale place recog-
nition [26] emerged more than a decade ago, with the advance of
vocabulary tree [21] based feature [19] extraction, indexing, stor-
age, and searching. Prior work [6, 15, 31] proposed various ways to
reduce online query time by fully/partially offloading the recogni-
tion task to the cloud, which missed the opportunity of on-device
computation that avoids potential severe private data leakage. To
reduce memory usage, Hedau et al. [12] proposed to download
pre-trained random forest classifiers on-the-fly based on the user’s
rough GPS location. This technique also avoids uploading the cam-
era image to the cloud. However, to support the place recognition
in the entire urban area, above work requires significant extra effort
in classifier training. Besides, knowing only the POI label is not
sufficient for AR applications relying on the real-time estimation
of camera poses.
SLAM-based AR solutions SLAM algorithms are the core of
ARKit [3], ARCore [9], and a wide range of real-time AR solu-
tions [18, 22]. Prior work [14] augmented SLAM by inertial sensors
to enable higher positioning accuracy. Hashemifar et al. [11] aug-
mented SLAM with WiFi for higher accuracy and lower latency. All
above approaches standalone cannot support POI AR apps whose
POI information is the prerequisite of rendering relevant AR effects.
Emergence of 5G The emergence of 5G will benefit our system
by enabling more downloads of vocabulary trees along the user
trajectory with nearly no transmission delay. However, 5G still
cannot root out potential privacy leaks while uploading the user
images to the cloud server.

6 CONCLUSION & ONGOINGWORK
The increasing prevalence of POI mobile AR applications presents a
critical opportunity for a more practical large-scale urban localiza-
tion system. We propose to construct an inexpensive localization
pipeline with image feature matching and SLAM in tandem. With
three key design points discussed in Section 3, we can significantly
cut down the ahead-of-time construction cost, reduce online user
wait time, and adapt the camera positioning to various AR types
and real-world environments.

We are now prototyping our system according to the key designs
detailed in Section 3 and will thoroughly evaluate our system with
larger image collections.

ACKNOWLEDGMENTS
The authors from Purdue were supported in part by NSF Award
1846102, 1718702, and a Google Faculty Award.

Session 2: Mobile Sensing and Analysis HotMobile ’20, March 3–4, 2020, Austin, TX, USA

31

REFERENCES
[1] Mary Alatise and Gerhard Hancke. 2017. Pose Estimation of a Mobile Robot

Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter.
Sensors 17, 10 (Sep 2017), 2164. https://doi.org/10.3390/s17102164

[2] Cloud Security Alliance. 2010. Top Threats to Cloud Computing V1.0. https:
//cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf.

[3] Apple. 2019. ARKit. https://developer.apple.com/augmented-reality.
[4] Cheng Bo, Xiang-Yang Li, Taeho Jung, Xufei Mao, Yue Tao, and Lan Yao. 2013.

SmartLoc: Push the Limit of the Inertial Sensor Based Metropolitan Localization
Using Smartphone. In Proceedings of the 19th Annual International Conference
on Mobile Computing and Networking (MobiCom ’13). ACM, New York, NY,
USA, 195–198. https://doi.org/10.1145/2500423.2504574

[5] I. Constandache, R. R. Choudhury, and I. Rhee. 2010. Towards Mobile Phone
Localization without War-Driving. In 2010 Proceedings IEEE INFOCOM. 1–9.
https://doi.org/10.1109/INFCOM.2010.5462058

[6] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan. 2017. Cachier:
Edge-Caching for Recognition Applications. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). 276–286. https://
doi.org/10.1109/ICDCS.2017.94

[7] Dorian Gálvez-López and J. D. Tardós. 2012. Bags of Binary Words for Fast Place
Recognition in Image Sequences. IEEE Transactions on Robotics 28, 5 (October
2012), 1188–1197. https://doi.org/10.1109/TRO.2012.2197158

[8] Geographic.org/streetview. 2019. List of Street Names in Palo Alto, California,
Maps and Street Views. https://geographic.org/streetview/usa/ca/paloalto.html.

[9] Google. 2019. ARCore. https://developers.google.com/ar.
[10] Yihua Ethan Guo, Ashkan Nikravesh, Z. Morley Mao, Feng Qian, and Subhabrata

Sen. 2017. Accelerating Multipath Transport Through Balanced Subflow Com-
pletion. In Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking (MobiCom ’17). ACM, New York, NY, USA, 141–153.
https://doi.org/10.1145/3117811.3117829

[11] Zakieh S. Hashemifar, Charuvahan Adhivarahan, Anand Balakrishnan, and
Karthik Dantu. 2019. Augmenting Visual SLAM with Wi-Fi Sensing For Indoor
Applications. CoRR abs/1903.06687 (2019). arXiv:1903.06687 http://arxiv.org/
abs/1903.06687

[12] Varsha Hedau, Sudipta Sinha, C. Lawrence Zitnick, and Richard Szeliski. 2012.
A Memory Efficient Discriminative Approach for Location Aided Recognition.
In Proceedings of the 1st Workshop on Visual Analysis and Geo-Localization
of Large-Scale Imagery (in conjunction with ECCV 2012) (proceedings of the
1st workshop on visual analysis and geo-localization of large-scale imagery (in
conjunction with eccv 2012) ed.). Springer Verlag.

[13] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. MorleyMao,
Subhabrata Sen, and Oliver Spatscheck. 2013. An In-depth Study of LTE: Effect
of Network Protocol and Application Behavior on Performance. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13). ACM,
New York, NY, USA, 363–374. https://doi.org/10.1145/2486001.2486006

[14] Shahram Izadi, David Kim, Otmar Hilliges, DavidMolyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and Andrew Fitzgibbon. 2011. Kinectfusion: real-time 3D reconstruction and
interaction using a moving depth camera. In In Proc. UIST. 559–568.

[15] Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. 2015. OverLay: Practi-
cal Mobile Augmented Reality. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’15). ACM,
New York, NY, USA, 331–344. https://doi.org/10.1145/2742647.2742666

[16] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti. 2015. SpotFi:
Decimeter Level Localization Using WiFi. SIGCOMM Comput. Commun. Rev.
45, 4 (Aug. 2015), 269–282. https://doi.org/10.1145/2829988.2787487

[17] Hongbo Liu, Yu Gan, Jie Yang, Simon Sidhom, Yan Wang, Yingying Chen, and
Fan Ye. 2012. Push the Limit of WiFi Based Localization for Smartphones. In
Proceedings of the 18th Annual International Conference on Mobile Computing
and Networking (Mobicom ’12). ACM, New York, NY, USA, 305–316. https:
//doi.org/10.1145/2348543.2348581

[18] H. Liu, G. Zhang, and H. Bao. 2016. Robust Keyframe-based Monocular SLAM
for Augmented Reality. In 2016 IEEE International Symposium on Mixed and

Augmented Reality (ISMAR). 1–10. https://doi.org/10.1109/ISMAR.2016.24
[19] D. G. Lowe. 1999. Object recognition from local scale-invariant features. In

Proceedings of the Seventh IEEE International Conference on Computer Vision,
Vol. 2. 1150–1157 vol.2. https://doi.org/10.1109/ICCV.1999.790410

[20] Montiel J. M. M. Mur-Artal, Raúl and Juan D. Tardós. 2015. ORB-SLAM: a Versatile
and Accurate Monocular SLAM System. IEEE Transactions on Robotics 31, 5
(2015), 1147–1163. https://doi.org/10.1109/TRO.2015.2463671

[21] David Nister and Henrik Stewenius. 2006. Scalable Recognition with a Vocab-
ulary Tree. In Proceedings of the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition - Volume 2 (CVPR ’06). IEEE Com-
puter Society, Washington, DC, USA, 2161–2168. https://doi.org/10.1109/
CVPR.2006.264

[22] Jarkko Polvi, Takafumi Taketomi, Goshiro Yamamoto, Arindam Dey, Christian
Sandor, and Hirokazu Kato. 2016. SlidAR: A 3D positioning method for SLAM-
based handheld augmented reality. Computers & Graphics 55 (2016), 33–43.

[23] Joseph Redmon and Ali Farhadi. 2016. YOLO9000: Better, Faster, Stronger. arXiv
preprint arXiv:1612.08242 (2016).

[24] Tilman Reinhardt. 2019. Using Global Localization to Improve Navigation. https:
//ai.googleblog.com/2019/02/using-global-localization-to-improve.html

[25] Adi Robertson. 2019. Facebook says it will build AR glasses and map the
world. https://www.theverge.com/2019/9/25/20883706/facebook-ar-glasses-
prototypes-live-maps-announce-oc6.

[26] G. Schindler, M. Brown, and R. Szeliski. 2007. City-Scale Location Recognition. In
2007 IEEE Conference on Computer Vision and Pattern Recognition. 1–7. https:
//doi.org/10.1109/CVPR.2007.383150

[27] Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion
Revisited. In Conference on Computer Vision and Pattern Recognition (CVPR).

[28] Joel Sommers and Paul Barford. 2012. Cell vs. WiFi: On the Performance of Metro
Area Mobile Connections. In Proceedings of the 2012 Internet Measurement
Conference (IMC ’12). ACM, New York, NY, USA, 301–314. https://doi.org/
10.1145/2398776.2398808

[29] Sturfee. 2019. Sturfee. https://sturfee.com/.
[30] The KITTI Vision Benchmark Suite. 2012. Visual Odometry / SLAM Evaluation

2012. http://www.cvlibs.net/datasets/kitti/evalodometry.php.
[31] Gabriel Takacs, Vijay Chandrasekhar, Natasha Gelfand, Yingen Xiong, Wei-Chao

Chen, Thanos Bismpigiannis, Radek Grzeszczuk, Kari Pulli, and Bernd Girod.
2008. Outdoors Augmented Reality on Mobile Phone Using Loxel-based Visual
Feature Organization. In Proceedings of the 1st ACM International Conference
on Multimedia Information Retrieval (MIR ’08). ACM, New York, NY, USA, 427–
434. https://doi.org/10.1145/1460096.1460165

[32] Scape Technologies. 2019. Hyper-accurate location, powered by computer vision.
https://scape.io/.

[33] A. Toshev, B. Taskar, and K. Daniilidis. 2010. Object detection via bound-
ary structure segmentation. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. 950–957. https://doi.org/10.1109/
CVPR.2010.5540114

[34] Z. Yu, H. Xu, Z. Yang, and B. Guo. 2016. Personalized Travel Package With Multi-
Point-of-Interest Recommendation Based on Crowdsourced User Footprints.
IEEE Transactions on Human-Machine Systems 46, 1 (Feb 2016), 151–158. https:
//doi.org/10.1109/THMS.2015.2446953

[35] A. Zafft and E. Agu. 2012. Malicious WiFi networks: A first look. In 37th Annual
IEEE Conference on Local Computer Networks - Workshops. 1038–1043. https:
//doi.org/10.1109/LCNW.2012.6424041

[36] Amir R. Zamir, Asaad Hakeem, Luc Van Gool, Mubarak Shah, and Richard Szeliski.
2016. Introduction to Large-Scale Visual Geo-localization. Springer International
Publishing, Cham, 1–18. https://doi.org/10.1007/978-3-319-25781-51

[37] Fan Zhang, Wenbo He, Xue Liu, and Patrick G. Bridges. 2011. Inferring Users’
Online Activities Through Traffic Analysis. In Proceedings of the Fourth ACM
Conference on Wireless Network Security (WiSec ’11). ACM, New York, NY,
USA, 59–70. https://doi.org/10.1145/1998412.1998425

[38] L. Zhang, X. Li, K. Liu, C. Liu, X. Ding, and Y. Liu. 2019. Cloak of Invisibil-
ity: Privacy-Friendly Photo Capturing and Sharing System. IEEE Transactions
on Mobile Computing 18, 11 (Nov 2019), 2488–2501. https://doi.org/10.1109/
TMC.2018.2878711

Session 2: Mobile Sensing and Analysis HotMobile ’20, March 3–4, 2020, Austin, TX, USA

32

https://doi.org/10.3390/s17102164
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
https://developer.apple.com/augmented-reality
https://doi.org/10.1145/2500423.2504574
https://doi.org/10.1109/INFCOM.2010.5462058
https://doi.org/10.1109/ICDCS.2017.94
https://doi.org/10.1109/ICDCS.2017.94
https://doi.org/10.1109/TRO.2012.2197158
https://geographic.org/streetview/usa/ca/palo_alto.html
https://developers.google.com/ar
https://doi.org/10.1145/3117811.3117829
http://arxiv.org/abs/1903.06687
http://arxiv.org/abs/1903.06687
http://arxiv.org/abs/1903.06687
https://doi.org/10.1145/2486001.2486006
https://doi.org/10.1145/2742647.2742666
https://doi.org/10.1145/2829988.2787487
https://doi.org/10.1145/2348543.2348581
https://doi.org/10.1145/2348543.2348581
https://doi.org/10.1109/ISMAR.2016.24
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/CVPR.2006.264
https://doi.org/10.1109/CVPR.2006.264
https://ai.googleblog.com/2019/02/using-global-localization-to-improve.html
https://ai.googleblog.com/2019/02/using-global-localization-to-improve.html
https://www.theverge.com/2019/9/25/20883706/facebook-ar-glasses-prototypes-live-maps-announce-oc6
https://www.theverge.com/2019/9/25/20883706/facebook-ar-glasses-prototypes-live-maps-announce-oc6
https://doi.org/10.1109/CVPR.2007.383150
https://doi.org/10.1109/CVPR.2007.383150
https://doi.org/10.1145/2398776.2398808
https://doi.org/10.1145/2398776.2398808
https://sturfee.com/
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://doi.org/10.1145/1460096.1460165
https://scape.io/
https://doi.org/10.1109/CVPR.2010.5540114
https://doi.org/10.1109/CVPR.2010.5540114
https://doi.org/10.1109/THMS.2015.2446953
https://doi.org/10.1109/THMS.2015.2446953
https://doi.org/10.1109/LCNW.2012.6424041
https://doi.org/10.1109/LCNW.2012.6424041
https://doi.org/10.1007/978-3-319-25781-5_1
https://doi.org/10.1145/1998412.1998425
https://doi.org/10.1109/TMC.2018.2878711
https://doi.org/10.1109/TMC.2018.2878711

	Abstract
	1 Introduction
	2 A case for customizing localization for POI AR
	2.1 Observations
	2.2 System Overview

	3 Design
	3.1 Indexing Features as Vocabulary Forest
	3.2 Incremental Tree Prefetch
	3.3 Adaptable Camera Positioning

	4 Preliminary Results
	5 Related Work
	6 Conclusion & ongoing work
	Acknowledgments
	References

