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Abstract
Interactive wearable devices bring dramatic changes to apps and
hardware, leaving operating system (OS) design in the mist. To this
end, we thoroughly examine the execution efficiency of Android
Wear, a popular wearable OS. By running a suite of fifteen bench-
marks, we profile four system aspects: CPU usage, idle episodes,
thread-level parallelism, and microarchitectural behaviors. We present
the discovered inefficiencies and their root causes, together with a
series of widespread, yet unknown OS design flaws. Towards de-
signing future wearable OSes, our study has yielded a generic les-
son, key insights, and specific action items.

1. INTRODUCTION

Interactive wearable, as exemplified by smart watches, is a new-
comer to the spectrum of mobile computers. Being in close prox-
imity to users, it further extends the boundary of mobile-cloud ser-
vice, integrating computing even tighter with our daily lives.1 In the
year 2014, nearly three million of Android Wear and Apple watch
devices have been shipped [7].

Wearable, as compared to existing mobile devices such as smart-
phones and tablets, exhibits unprecedented characteristics. On top
of the software/hardware stack, the user frequently interacts with
the wearable throughout daily life; each interaction is dedicated to
a simple task and only lasts for a couple of seconds [2, 45, 10]. At
the lowest level, a wearable device’s small form factor diminishes
the screen and battery; CPU runs slower, possesses fewer cores,
and embraces simpler microarctechitures.

Operating systems (OS) for wearable, by contrast, evolve rather
slowly. They often feature renovated, watch-friendly user inter-
faces (UI) while reusing most of the core components from hand-

1Recognizing the diversity of modern wearable devices, in this pa-
per we use “wearable” to refer to commercially available, interac-
tive devices that support third party apps and are intended for mass
market.
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Figure 1: The timeline of launching the “Settings” app on An-
droid Wear, showing both anomalous idle episodes (not due to I/O)
and intensive CPU execution

held [10, 47] for compatibility and engineering ease. There was
neither a clear understanding of how such a design choice impacts
wearable efficiency nor a set of guidelines for wearable OS design.

Our pilot study [31] of Android Wear, one of the most popu-
lar wearable OSes, presented a framework for analyzing the OS
behaviors and discovered preliminary evidences of design inade-
quacy: many simple scenarios were surprisingly CPU-intensive;
numerous idle episodes slowed down system response and wasted
energy. This pilot study, however, offered no thorough analysis.
Beyond Android Wear, the Apple watch is also reported to show
unsatisfactory battery life [50] and slow response [6], although lit-
tle is known about its internals.

The high power and poor responsiveness are mostly due to ex-
ecution inefficiency. Figure 1 shows a real case observed on an
LG smart watch: while the device is awake, the user touches the
screen to launch “Settings”, a simple app that has already resided
in memory. As shown in the Figure, the wearable device takes 987
ms before showing the UI of “Settings” to the user, which is unac-
ceptably long, given that one interaction only lasts for seconds. In
phase 1, i.e. from user touch until the launch action starts, the CPU
exhibits anomalous idle spanning 130 ms, which we confirmed was
not due to well-known reasons such as I/O; in phase 2, the OS per-
forms the launch action and the CPU remains busy for about 810
ms. Note that the CPU, an ARM Cortex-A7 clocked at 780 MHz,
is far from wimpy.

To demystify the execution inefficiency, this paper presents a
systematic characterization of Android Wear. We focus on its ma-



jor components – the OS shell and daemons – based on two ratio-
nales: these OS components dominate the overall CPU execution,
as shown in our pilot study [31] and confirmed by the new evidence
in this paper; these OS components are likely to remain as the core
of future Android Wear systems.

Through running a suite of fifteen benchmarks on two cutting-
edge wearable devices, we examine four key system aspects: CPU
usage, idle episodes, thread-level parallelism (TLP), and microar-
chitectural behaviors. For each aspect, our examination covers the
global statistics, their fine-grained breakdown, and the explanation
of the observation. We have the following major findings:

Many costly OS services are likely software cruft. In the heavy
OS execution, a significant fraction of CPU cycles are spent in the
legacy code managing app life cycles, complex window layout, or
animation. Given the simplicity of wearable apps, much of the code
complexity is likely unwarranted.

Basic data structures are hot spots. Tens of hot functions, in par-
ticular those manipulating basic data structures, account for most
CPU usage of the major OS services.

OS inadequacies and performance overprovision cause anoma-
lous idle. OS flaws in managing voice UI and the power states of
I/O peripherals lead to excessive idle time, slowing down system
response and device’s entry to deep sleep. In continuous interac-
tion, the CPU and GPU performance provision exceeds the com-
pute demand of simple animation, leaving plentiful (>50%) idle
time.

System exhibits substantial TLP, showing the need for multi-
core. The concurrent execution of apps and OS daemons leads to
TLP that is up to 2.2. This exceeds typical smartphone workloads
and is even on a par with many desktop workloads. This disproves
the common belief that wearables only need a single core and war-
rants the use of multicore.

Complex OS code mismatches the microarchitecture. The OS
execution sees high rates of misses in the L1 icache, iTLB, and
branch prediction. This mismatch roots in the large OS code base
and the poor code locality; it is further exacerbated by the scaled-
down microarchitecture of wearable CPUs.

In addition to these high-level findings, our investigation has
yielded i) a large set of quantitative results such as CPU usage
breakdown for individual OS services and the lists of hot functions,
and ii) the discovery of multiple OS flaws that affect numerous
commercial devices, have serious impact, but were unknown be-
fore. By presenting them, we clearly point out the targets of future
software and hardware optimization.

Lesson & Insight. Our characterization shows a generic lesson
regarding the origin of the discovered OS inefficiency: many ex-
isting designs that traded execution efficiency for engineering ease
or flexibility now cause major bottlenecks on wearables. Towards
evolving the wearable OS, we contribute a key insight: today, the
inefficiency within individual OS components is the first-order con-
cern. Accordingly, towards making the OS efficient, it is more re-
warding to fix individual OS components in question rather than
embracing a new OS structure.

We have made the following contributions:

• We present a comprehensive suite of benchmarks covering typi-
cal use of interactive wearable devices and a workflow for analyz-
ing the benchmarks.
• For the first time, we thoroughly quantify a commodity wear-

able OS, present the outcome in detail, and report a series of OS
inadequacies that had a wide impact but were unknown before.
• Through an in-depth analysis of the results, we reveal the root
causes of the observed inefficiency, discuss their implications, and
contribute a set of new guidelines for future wearable software sys-
tem design.

All the code, data, and benchmark videos are at:

http://xsel.rocks/p/wear

2. BACKGROUND & MOTIVATION

Next, we highlight the wearable’s unique usage that drives our
benchmark design, discuss the hardware trends, and describe the
Android Wear OS, the focus of our investigation.

2.1 Usage Patterns

Wearable introduces unprecedented usage patterns. According
to the app design guidelines by major vendors [2, 17, 45], users in-
teract with wearable devices frequently throughout daily use; each
interaction is short, often less than 10 seconds, and is dedicated to
a simple task, e.g., glancing over an email notification. Due to the
limited content that can be displayed on one screen, users spend a
short time on one screen before switching to the next. Accordingly,
a wearable system should cater to such frequent, brief interactions
with minimal latency and high efficiency.

2.2 Device Hardware

Compared to handheld, wearable is “leaner” on most hardware
specifications, for which we identify three noteworthy trends.

First, the battery capacity is tiny. Ranging from 200 to 400mAh,
it is almost one order of magnitude smaller than a typical smart-
phone battery which is around 2000 mAh. This calls for high en-
ergy efficiency.

Second, processing power dwarfs display power. On smartphones,
display power dominates the system power. Compared to a smart-
phone display, a wearable display has 20 – 40× fewer pixels, fun-
damentally changing the proportion of display power. Our pilot
study [31] shows that while a smart watch consumes up to 4 Watts
during interaction, its display consumes no more than 150 mW. As
a result, optimizing software activities becomes the first priority in
quest of energy efficiency.

Third, the CPU is much simpler. To pursue high efficiency with-
out losing software compatibility, wearable devices often embrace
a scaled-down CPU that still remains architecturally identical to
handheld’s CPU. For instance, almost all commodity smart watches,
from the Android devices [29] to the Apple Watch [1], use ARM
Cortex-A7, a partial dual-issue, in-order core implementing the
pervasive ARMv7 ISA. The core is often clocked at 500 – 800
MHz.

2.3 Android Wear OS

Android Wear is one of the most popular OSes for interactive
wearables. Although not completely open-source (unlike Android
for handheld), it is the wearable OS with the most public informa-
tion. Targeting the common usage of smart watches, Android Wear
supports third-party applications and features a resigned system UI,
including Card for notifications, Context streams, and voice input.
Assuming a companion smartphone is nearby, Android Wear wire-



lessly offloads to the smartphone heavy compute tasks, e.g., voice
recognition.

The apps on Android Wear, despite their renovated UI, follow
Android’s conventional programming paradigm: they are written
in Java, compiled ahead-of-time, and executed atop the managed
Android Runtime.

Major OS components. Same as on handheld devices, most of
Android Wear’s personality is implemented as userspace processes.
The most important ones are three:

• System Server is the key daemon hosting the core OS services,
such as those managing app life cycles, display layout, and security
policy. It is implemented with around 110K SLoC in over 100 files.
It is managed, i.e., running atop the Android Runtime.
• Surface Flinger, the daemon controlling UI animation, periodi-
cally composites bitmaps rendered by multiple apps into the final
framebuffer. It is implemented with around 11K SLoC in 81 files.
• Clockwork is the OS shell that implements the system UI such as
app launcher and voice input. Its source code is unpublished at the
time of writing (Dec. 2015). It runs atop the Android Runtime and
is likely written in Java.

Underneath the userspace is a mostly vanilla Linux kernel en-
hanced by a handful of Android-specific facilities, e.g., WakeLocks [20]
and Binder IPC [18]. Enforced by the kernel, all apps and OS pro-
cesses are sealed in separate address spaces and may communicate
through the Binder IPC. Within one given process, threads often
communicate through shared message queues.

3. BENCHMARK SCENARIOS

The usage of wearables is dominated by a small set of scenar-
ios [31, 25]. Accordingly, we conduct scenario-centric profiling,
a proven approach to characterizing interactive systems [23, 27].
By augmenting the core scenarios identified in our pilot study [31],
we design a suite of benchmarks with three goals: the benchmarks
should cover common wearable usage as described in app design
guidelines [2, 10]; they should exercise a variety of system aspects
such as computing, IO, and power management; they should be
simple and require minimal user inputs to ease reproducing.

As summarized in Table 1, our benchmark suite consists of fif-
teen benchmarks falling into the following four categories.

• Wakeup. Stimulated by internal or external events, a wearable de-
vice transits out of suspended mode and presents brief information.
No user input follows the device wakeup. Since wakeup happens
frequently throughout daily usage, energy efficiency is the most
important metric.
• Single input. A waking wearable device responds to a single in-
put from the user, e.g., touch or voice command, a common pattern
of brief interactions. Because the user is waiting, the device needs
sprinting to achieve low UI latency.
• Continuous interaction. Users are interacting with the device
continuously, e.g. navigating among Cards [10]. The resultant UI
animation requires the device to produce a steady stream of graphic
frames, which often requires a synergy between CPU and GPU.
• Sensing. A set of minimalist programs sample and process sensor
data periodically to collect context information, which is known to
drive wearable app execution [10]. These programs keep their UI
as a black screen with no updates.

Latency and power consumption. As the measurement in Ta-
ble 1 shows, these conceptually simple scenarios often exhibit long
user-perceivable latency and substantial power consumption. These
two metrics, as exemplified by the case in Figure 1, are tightly cou-
pled and are ultimately determined by the system’s execution ef-
ficiency. This motivates our characterization as will be presented
below.

4. METHODOLOGY

We next sketch our overall experiment setup and describe the
four key aspects under profiling.

Experiment setup. We run all the benchmarks on two state-of-
the-art Android Wear devices, the LG Watch R [29] and the Sam-
sung Gear Live [46], both using Qualcomm’s APQ8026 system-
on-chip (SoC) and running the stock Android Wear 5.0 “Lollipop”.
Although the SoC is equipped with 4× Cortex-A7 cores, three are
forced offline by both device vendors – a common practice among
Android Wear watches. We will examine the CPU details in Sec-
tion 5.3 and 5.4.

In the rest of this paper, we present the quantitative measure-
ments from the LG Watch R; yet, all the discoveries, e.g., OS in-
efficiency, have been confirmed on both devices unless otherwise
stated.

To power  
monitor 

Figure 2: Top: the battery
interface carved out from
Nexus 5; bottom: the inter-
face (flipped) connected to
the LG watch R.

Power measurement. While it
is common to measure a smart-
phone’s power by interposing its
battery interface, doing so for
wearable is challenging: the lat-
ter’s batteries have tiny contacts
and are incompatible with com-
modity power monitors [38]. To
this end, as shown in Figure 2,
we carve out a compatible inter-
face circuit from a smartphone
battery by the same manufac-
turer and use the interface as
an adapter between the smart
watch and an external power
monitor. This technique was
unknown to the community be-
fore, to the best of our knowl-
edge.

Toolset. To examine system behaviors at different levels and gran-
ularities, we have employed a set of tools: systrace [19] for cap-
turing global system events such as scheduling, I/O activities, and
IPC; the Android Runtime’s built-in function tracer for recording
function call history in individual processes; the Linux perf for
sampling CPU performance counters. We have further customized
these tools for collecting additional information and overcoming
the limitation of the current Android Wear [31]. All the customized
tools are open for download as mentioned in Section 1.

Tackling profiling overhead. The major profiling overhead comes
from event tracing: each tracepoint saves in memory a timestamp
and a small amount of event information that is at most tens of
bytes. While the overhead is negligible in tracing the relatively
sparse system events, it can be overwhelming in tracing function
invocations.

We tackle the overhead in two ways. First, in quantifying global
system behaviors, we only rely on system events; in order to under-



Table 1: The benchmark suite. The power and energy are measured as described in Section 4; all time values are measured by systrace [19].
Some of the scenarios and their measurement were previously reported in our pilot study [31] and are included here for completeness. The
slow-motion videos of the benchmarks are available as mentioned in Section 1.

 
Scenario Description 

Duration (D) or  
Latency (P) /ms 

Energy (E) /mJ 
Power (P) /mW 

# of 
Tasks 

W
ak

eu
p 

update A minimalist watch face is updated with a new minute value. Device gets suspended. D: 364 E: 61 81 
notif Receive a weather Card from the phone (over Bluetooth). Device gets suspended. D: 4645 E: 539 135 
wrist User’s wrist motion wakes up the device. D: 407 E: 155 113 
touch Touch a sleeping watch to light up the watch face. D: 184 E: 69 102 

Si
ng

le
 In

pu
t lch.set Screen is on; touch to launch “System Settings” (preloaded in memory). P1:177  P2:810 E: 440 92 

lch.calc Screen is on; touch to launch a calculator app (light). P1:202  P2:520 E: 376 99 
lch.game Screen is on; touch to launch “DeadlySpikes” (heavy). P1:182  P2:1236 E: 775 107 
palming Screen is on; cover the screen with palm so that the device is suspended. D: 2343 E: 556 130 
voice Screen is on; Bluetooth is off; speak “Ok Google” to activate the voice command UI. D: 1671 E: 1675 65 

In
te

ra
ct

. game The interval between two adjacent touches in a busy game, “DeadlySpikes”.  D: 409 E: 241 62 
notes Speak the word “hello” for 3 times; user waits until the notes recognized and saved. D: 3897 E: 2449 89 
navi Screen is on; pop up a set of two “Weather” cards; navigate and dismiss. D: 4119 E: 2400 67 

Se
ns

in
g accel A minimalist program sampling the accelerometer at the default rate (5Hz). Screen is blank. P: 83 33 

heart A minimalist program sampling the heart rate sensor at the default rate (5Hz). Screen is blank. P: 105 21 
baro A minimalist program sampling the barometer at the default rate (5Hz). Screen is blank. P: 113 28 

                                                            P1: from user touch to launch start; P2: from launch start to UI displayed 

stand their causes, we collect function trace from extra runs. Sec-
ond, in quantifying function-level activities, we deduct an overhead
of 4 µs from each traced function invocation. The overhead is due
to bookkeeping each function’s entry and exit, and is measured and
verified as constant regardless of the traced functions; specifically,
we measured the overhead as the delay of tracing a no-op function.

CPU Usage

We collect and analyze CPU usage at two granularities.

Task-level breakdown. To identify the tasks2 that are the major
CPU consumers, we build an analyzer to scan all traced schedul-
ing events and attribute the CPU busy episodes to individual tasks
accordingly.

Function-level breakdown. To further locate the performance
hot spots in System Server, the managed OS daemon where most
services run, we tap into the function trace and attribute the CPU
usage to distinct managed functions. More specifically, we employ
the following two metrics, commonly used in Android app profil-
ing, to characterize one invocation of a managed function:

• Exclusive CPU cycles are spent in the function’s own code, i.e.,
excluding any of its subroutines. Intuitively, the total exclusive cy-
cles of a given function imply the potential benefit from optimizing
the function per se;
• Inclusive CPU cycles are spent in the function’s code as well as
in all subroutines being called. Intuitively, the total inclusive cycles
of a given function imply the potential benefit from eliminating
invocations to this function.

2Following Linux’s lingo, we use tasks to refer to scheduling enti-
ties, regardless of whether they are in the same or separate address
spaces.

Note that both metrics include the time spent in both user and
kernel spaces; they do not cover the time when a task is off CPU
due to being scheduled out.

Idle Time Analysis

In a pilot study of Android Wear [31] we have noticed excessive
idle episodes. Although interactive systems are known for being
intermittently idle, e.g. due to user think, the amount and duration
of the observed idle episodes are unusual.

To reveal the root causes of all observed idle episodes, we first
attempt to match them with system events known to cause idle,
e.g. I/O and power management. Accounting for the remaining
idle episodes, however, is more challenging: they often root in OS
service’s stalling in serving app’s requests. To further obscure the
true cause, as the service is stalled, the kernel will schedule in other
unrelated tasks, making the CPU intermittently busy as exemplified
by phase 1 of Figure 1.

To address this challenge, we build IdleChecker, an analyzer
that helps mapping anomalous idle episodes to the responsible code
regions, based on a simple rationale: the function calls and IPC
transactions spanning an anomalous idle episode are suspicious. In
a nutshell, IdleChecker runs the following steps for each idle
episode.

First, it identifies suspicious app tasks that are blocked through-
out the entire idle episode but run after the episode. Second, for
each suspicious task, it identifies two suspicious CPU time quanta:
the one right before the idle episode and the one right after it. Third,
IdleChecker examines the suspicious quanta, looking for IPC
transactions spanning across the idle episode. Finally, the analyzer
identifies the function invocations that either coincide with the IPC
or span across the idle episode. It maps the names of the identified
functions, which are preserved in the trace, back to the source code.

IdleChecker effectively narrows down the investigating scope



from tens of thousands of function invocations per benchmark down
to a couple of functions, making our idle analysis tractable.

Thread-level Parallelism (TLP)

Despite the popular belief that one CPU core is enough for wear-
able workloads, we seek to experimentally test it by measuring
thread-level parallelism (TLP), a metric widely used for gauging
an interactive system’s need for core count. Intuitively, TLP is the
average number of busy CPU cores during the non-idle time. It is
formally defined as follows [15]:

TLP =
n∑

i=1

i ∗ ci/(1− c0)

In the formula, c0 is the total time when no threads are running;
ci stands for the time when exactly i threads are running simulta-
neously; n is the number of cores available.

To measure TLP, we override the device vendor’s default config-
uration and force all four cores online, each running at their default
clock rate. We repeat each scenario three times, identify the busy
episodes of every core from the traced scheduling events, and cal-
culate TLP based on the formula above.

Microarchitectural behaviors

Little work has been done on the microarchitectural behaviors of
wearable workloads, making the microarchitecture design a mys-
tery. To this end, we characterize the microarchitectural behaviors
of the major OS components, due to their dominating CPU usage
and importance in the current and future Android Wear systems.
By using the Linux perf, we sample the performance counters of
the Cortex-A7 CPU on our test devices. The full-fledged perfor-
mance counters allow us to observe branch prediction, cache, and
TLB in all benchmarks.

5. RESULTS

Next, we present the characterization results on the four aspects.
For each aspect, we first highlight the key findings, explain them
with evidence or case studies, and finally discuss their implications
on future software or hardware design. Note that each experiment
reported has been repeated at least 3 times.

5.1 CPU usage

Despite their conceptual simplicity, most benchmarks show sub-
stantial CPU utilization, as shown in Figure 3(a). In fact, the CPU
often keeps spinning for tens to hundreds of ms without a break, as
exemplified by the case shown in Figure 1. This observation raises
one top profiling question: where do these CPU cycles go?

5.1.1 Global CPU Usage

• Intensive OS execution often dominates the global CPU usage.

As shown in Figure 3(a), the percentages of the OS-consumed
CPU cycles in the total busy cycles range from 48% (game) to 93%
(wrist). A further breakdown among the OS daemons, as shown in
Figure 3(b), indicates that two daemons are in particular heavy:

System Server, which hosts most OS services; Surface Flinger,
which composites bitmaps for painting UI. It is worth noting that
even for the sensing benchmarks where the app UI is blank, the OS
seems to run Surface Flinger occasionally in order to update the
entire system UI.

Overall, the observation confirms our intuition: since wearable
apps are simple, the cost of OS execution becomes overwhelm-
ing. This observation also justifies our OS-focused investigation as
stated in Section 1.

5.1.2 OS Services

• Many costly OS services are likely software cruft.

Due to the significance of System Server, we further examine
how its enclosed OS services contribute to the CPU usage. We
do this by studying each OS service’s inclusive CPU cycles as de-
fined in Section 4. As shown in Figure 3(c), among a variety of
OS services, the most CPU-intensive ones are: activity manager,
which manages the life cycles of apps; window manager, which
manages the complex UI layout of multiple apps; power manager,
which enables app to control device power state through Wake-
Lock [20]; choreographer, which controls the timing of UI anima-
tion. These sophisticated OS mechanisms, despite being essential
to smartphones, e.g. in managing app multitasking or handling
screen rotation, become cruft in serving simple wearable apps that
have minimalist UI.

5.1.3 Hot Functions in System Server

• The distribution of hot functions is highly skewed.
• Manipulating basic data structures consumes substantial CPU
cycles.
• Legacy OS functions may become serious performance bottle-
necks.

To gain further insights into System Server, we break down its
CPU usage at the function level. We study the exclusive cycles
of functions as defined in Section 4. As shown in Figure 4, the
distribution of CPU time over all functions is heavily skewed. Al-
though the total number of distinct functions per benchmark ranges
from several hundreds to a few thousands, the top 5 “hot” functions
constitute more than 20% of System Server’s CPU cycles in most
benchmarks; the top 50 hot functions constitute more than 50%.
This skewed distribution implies highly concentrated performance
hot spots. The skewness is rare in commodity OS workloads: for
instance, prior measurement shows that the Linux kernel often does
not see a small set of functions dominating CPU usage [43].

In understanding the skewness, we have found a small set of
functions – those manipulating basic data structures – are hot in
almost all benchmarks. As shown in the Total column of Table 2,
these functions collectively contribute a significant fraction to Sys-
tem Server’s CPU usage, up to 45%. In benchmarks such as notes,
these functions are even more CPU-hungry than those implemented
by the code of System Server.
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(c) Major OS services in System Server

Figure 3: The CPU usage breakdown

A further breakdown shows that these functions concentrate on
tens of basic data structures implemented in a couple of software
packages, as summarized in Table 2:

• java.core: the utility data structures from Java’s core API,
such as arrays, collections, maps, and dictionaries;
• java.string, Java’s string implementation;
• android.util, the utility data structures, such as SparseAr-
ray and ArraySet, from the Android framework libraries;
• threadlocal, thread-local variables and objects;
• android.msgq, message queues for inter-thread communica-
tion.

Although one single invocation of them is as short as a couple of
µs, the large number of invocations per benchmark, sometimes
multiple thousands, makes their CPU usage substantial as a whole.
This can be observed in the full lists of top hot functions in Table 3.

5.1.4 Discovered OS Execution Bottlenecks

In addition to the operations on basic data structures, we found
that multiple hot functions, among the top ones listed in Table 3,
correspond to serious bottlenecks existing on various OS aspects.

Ad-hoc backlight effect. A mobile OS often varies the screen
brightness as it sees fit. Yet, we have noticed setLight..()3,
the OS function setting the screen backlight, is expensive, taking
more than 100 ms or 78M CPU cycles per affected benchmark. A
deeper investigation holds a vendor library (light.lenok.so)
responsible: in setting the backlight to a new level, the library emu-
lates a transition effect by modulation, for which it repeatedly calls
the kernel driver and thus increases the execution cost by 50×. This
function is invoked by System Server every 35 ms to realize an-
other level of light modulation. Together, they create an expensive
anomaly we dubbed “modulating of modulation”. This bottleneck,
rooting in a device-specific library, affects the LG device but not
the Samsung one.

UI layout. Due to the limited content that can be shown on a small

3For all shortened function names mentioned in this section, see
Table 3 for their full names.

Table 2: The percentages of System Server’s CPU cycles spent on
manipulating basic data structures
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 update 2.6% 5.5% 4.5% 6.7% 6.1% 1.6% 27.0% 

notif 4.8% 8.5% 2.9% 8.5% 2.7% 3.3% 30.7% 

wrist 4.9% 5.2% 2.1% 3.6% 4.2% 2.0% 22.0% 

touch 2.8% 6.1% 8.7% 4.1% 10.9% 3.7% 36.3% 

S
in

g
le

 I
n
p
u
t lch.set 2.3% 3.8% 5.5% 6.0% 4.1% 2.5% 24.2% 

lch.calc 2.7% 4.2% 4.5% 7.0% 3.0% 3.0% 24.4% 

lch.game 2.3% 3.9% 5.1% 7.6% 2.9% 2.5% 24.3% 

palming 4.5% 2.1% 3.0% 3.2% 2.0% 2.9% 17.7% 

voice 1.4% 3.0% 3.7% 20.3% 1.2% 2.2% 31.8% 

In
te

ra
ct

. game 0.0% 0.1% 1.8% 36.3% 0.9% 2.6% 41.7% 

notes 4.2% 4.1% 2.7% 18.7% 12.2% 3.2% 45.1% 

navi 1.0% 3.8% 5.3% 7.3% 3.1% 3.4% 23.9% 

S
en

si
n
g

 

accel 1.7% 4.0% 5.1% 5.9% 3.0% 1.5% 21.2% 

heart 1.6% 4.6% 5.5% 5.7% 4.3% 1.7% 23.4% 

baro 4.9% 6.1% 4.8% 5.1% 2.5% 5.9% 29.3% 
 

display, a user often navigates among “Cards”, or app windows,
frequently. This new UI pattern, however, is poorly supported by
the expensive OS mechanism for window switch. Every time a new
window is brought to the foreground, System Server re-layouts the
UI: it updates each app window’s display properties, including size,
location, and visibility, and runs transition animation. At the heart
of this workflow is perf..Layout(), a giant function catering
to the complex UI layout of multiple apps. On our test devices,
each invocation takes 1 ms (780K CPU cycles); in one benchmark
that lasts for a few seconds, this function alone may take up to 10
ms (7.8M cycles).

Maintaining low-memory killer. To reconcile app memory de-
mand with the physical memory limit, the OS maintains a low-
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Figure 4: The percentages of CPU cycles spent by System Server
on its top N hot functions (x-axis, logarithmic). Each subfigure is
for one benchmark category. The legends contain the numbers of
distinct functions invoked in each benchmark.

memory killer that works based on per-process threshold values.
At run time, the OS may kill any process whose threshold is above
the amount of available physical memory. By design, the per-
process thresholds have to be adjusted in the event of significant
changes to memory use, e.g., app startup, window switch, pro-
cess termination, etc. To do the adjustment, System Server ex-
ecutes computeOom..() for each process, which turns out to
be a heavy burden. For instance, in update or wrist, this function
has been invoked for over 150 times; this function alone consumes
around 15 ms or 11M CPU cycles.

Object reflection. A powerful mechanism, reflection enables pro-
gram code to inspect its objects at run time [49]. However, its lazy
behavior may incur significant overhead in wearable’s brief use.
In suspending a device, System Server stops the wireless network-
ing service (among other OS services) by operating the service’s
state machine. For bookkeeping, System Server uses reflection to
retrieve the name of a state object (getSimpleName()). The
reflection leads to a flood of 33,000 function invocations, most
spent on loading and parsing annotations from the object’s class
file (getAnnotationReader()). As a result, each reflection
takes around 40 ms (3.1M cycles), deferring the device’s entry to
suspended mode in an expensive way. This accounts for the high
CPU usage of WiFi manager in palming as shown in Figure 3(c).

5.1.5 Design Implications

Our findings clearly suggest that i) OS should be the primary
target of system optimization and ii) optimizing the small set of
hot functions is likely rewarding. In particular, the functions ma-
nipulating basic data structures should receive priority efforts, to-
wards which we foresee a few promising approaches: hand-tuned
implementation; exploiting SIMD hardware, e.g. ARM NEON [3],
for vector operations; hardware-accelerating the most common data
structures, an approach shown to benefit intensive mobile apps [55].

The discovered OS bottlenecks might already be known as non-
cheap, but were still adopted by the current OS in favor of engineer-
ing ease, flexibility, visual appeal, etc. However, our results have
shown that they now become unacceptably expensive for wearable

devices. This observation urges a rethink of such OS design deci-
sions. In order to do so, we contribute the following new guide-
lines: i) the software cruft for the complex runtime environment
and UI layout should be aggressively trimmed down; ii) the OS
should be frugal at spending CPU cycles on “add-on” user experi-
ence; iii) lazy or on-demand operations, despite their wide use for
efficiency, may hurt system responsiveness when they come in the
way of short user interactions.

5.2 Idle Episodes

• The idle episodes are plentiful and of a variety of lengths.
• Idle anomalies are mainly contributed by improper OS imple-
mentations and performance overprovision during interaction.

As shown in our pilot study [31] and discussed in Section 4, idle
anomalies hurt both user experience and energy efficiency. Next,
we present a quantification of them and describe our discovery of
their root causes.

We select nine out of fifteen benchmarks whose idle time is
larger than 5% of the benchmark duration. The statistics of idle
time, as shown in Table 4, exhibit four unusual characteristics.
First, over the duration of one benchmark, the accumulative idle
time can take a significant fraction up to 87%. Second, the number
of idle episodes is large, often multiple hundreds per benchmark.
Third, many of the episodes are as short as a couple of ms, not
enough for the device to enter low-power mode. Fourth, numerous
idle episodes even emerge in CPU-bound benchmarks, e.g. launch-
ing an in-memory app (lch.set).

As summarized in Table 4, our investigation reveals a variety of
causes, which, together, account for more than 91% of all the ob-
served idle time. In addition to a couple of well-known causes such
as user think, storage I/O or app policies, we have discovered two
groups of causes originated in the OS design, as discussed below.

5.2.1 Improper OS Designs

Surprisingly, a large fraction of idle episodes are incurred by OS
design flaws. We next describe the two most notable cases that have
high impact on user experience and energy efficiency.

Interference from voice UI. Clockwork, the OS shell, hosts an
always-on voice UI and thus is consuming a stream of audio input.
Unfortunately, managing the voice UI incurs a long delay. When a
user launches a new app through Clockwork, the foreground Clock-
work releases its system resources and moves to the background.
In doing so, Clockwork sends an IPC request to MediaServer, an
OS daemon, asking to terminate the audio input stream. By design,
this protocol is synchronous for security. On one hand, Clockwork
stalls launching until the request is completed. On the other hand,
MediaServer handles the request conservatively: its core function
setOutputDevice()waits for the audio input pipeline to com-
pletely drain so that no leftover audio samples will enter the newly
launched app. The draining holds the foreground app launch for
around 120 ms, constituting up to 19% of the user-perceived la-
tency in app launch benchmarks. Affecting both of our test devices,
this flaw is responsible for the idle anomaly shown in phase 1 of
Figure 1. Through experiments, we further confirmed that this flaw
is introduced by Android Wear, i.e. not existing on smartphone: we



Table 3: Top 5 hot functions of System Server based on an average over three benchmark runs. Functions operating basic data structures
are shaded. See Appendix for brief descriptions of these functions.

update
#Calls

(mean/SD)

Total Time

(mean/SD)
notif

#Calls

(mean/SD)

Total Time

(mean/SD)
wrist

#Calls

(mean/SD)

Total Time

(mean/SD)

computeOomAdjLocked 176 6.35 15.11 0.15 ProcessCpuTracker.collectStats 1 1 25.06 25.39 LightImpl.setLightLocked 23 4.16 164.08 30.1

removeObserverLocked 152 0 9.74 0.52 Values.cleanUp 220 48.39 15.06 3.45 MessageQueue.next 130 7.57 15.53 1.12

MessageQueue.next 40 0.58 9.52 0.32 computeOomAdjLocked 189 42.15 14.61 3.31 parseProcWakelocks 1 0 14.4 0.08

Values.cleanUp 98 2.08 6.68 0.22 AlarmManager$Batch.remove 285 70.47 12.59 3.19 computeOomAdjLocked 152 69 13.97 6.31

updateOomAdjLocked 19 0 6.55 0.22 PendingIntent.equals 488 109.7 9.74 2.45 Values.cleanUp 121 11.36 8.36 0.62

touch
#Calls

(mean/SD)

Total Time

(mean/SD)
lch.set

#Calls

(mean/SD)

Total Time

(mean/SD)
lch.calc

#Calls

(mean/SD)

Total Time

(mean/SD)

LightImpl.setLightLocked 20 12 124.02 63.26 SparseArray.get 2098 122.57 17.33 0.9 Values.cleanUp 1 0 53.01 8.94

MessageQueue.next 124 51.62 15.67 8.35 MessageQueue.next 70 3.46 13.21 0.66 Parcel.writeLongArray 165 1.15 11.35 0.1

Values.cleanUp 140 8.49 9.51 0.73 Values.cleanUp 174 3.79 11.15 0.13 SparseArray.get 1 0 10.84 0.98

String.equals 525 78.49 8.74 1.10 Parcel.writeLongArray 1 0 9.34 0.63 MessageQueue.next 1079 20.43 9.12 0.2

setHalInteractiveModeLocked 6 2.12 7.34 0.96 animateLocked 42 3.21 9.03 0.97 Parcel.writeLong 45 2.31 7.71 0.92

lch.game
#Calls

(mean/SD)

Total Time

(mean/SD)
palming

#Calls

(mean/SD)

Total Time

(mean/SD)
voice

#Calls

(mean/SD)

Total Time

(mean/SD)

Values.cleanUp 220 22.11 14.96 1.27 DirectByteBuffer.get 6040 1060.08 92.78 12.34 Values.cleanUp 41 5.03 2.81 0.35

SparseArray.get 1453 62.78 12.42 0.66
DirectByteBuffer.

checkIsAccessible
6586 1155.05 85.94 11.25 Binder.execTransact 19 3.06 1.14 0.15

Parcel.writeLongArray 1 0 10.94 0.53 computeOomAdjLocked 709 1.53 64.74 1.9 ThreadLocal.get 41 3.06 1.11 0.12

performLayoutAnd

PlaceSurfacesLockedInner
9 0.58 9.41 0.48

DirectByteBuffer.

checkNotFreed
6933 1215.1 51.09 5.85

performLayoutAnd

PlaceSurfacesLockedInner
1 0 0.85 0.01

MessageQueue.next 42 1 7.63 0.56 MemoryBlock.isAccessible 6586 1155.05 49.62 5.61 ThreadLocal$Values.put 39 3.06 0.83 0.08

game
#Calls

(mean/SD)

Total Time

(mean/SD)
notes

#Calls

(mean/SD)

Total Time

(mean/SD)
navi

#Calls

(mean/SD)

Total Time

(mean/SD)

Values.cleanUp 163 11.72 12.31 0.93
ThreadLocal$Values.

cleanUp
393 33.41 28.08 2.68

performLayoutAnd

PlaceSurfacesLockedInner
6 0 6.22 0.39

DisplayInfo.writeToParcel 54 3.21 10.83 0.64 MessageQueue.next 67 6.03 27.76 2.41
ThreadLocal$Values.clean

Up
79 12.22 5.88 0.87

Parcel.writeInt 1181 70.72 5.82 0.31
MessageQueue.

enqueueMessage
133 12.01 14.63 1.35

InputEventReceiver.

finishInputEvent
60 5 5.02 0.44

ThreadLocal.get 163 11.53 4.39 0.29 ThreadLocal.get 526 45.49 14.18 1.50 SparseArray.get 533 58.29 4.9 0.59

Values.put 163 11.72 3.84 0.28 String.equals 292 38.08 10.26 0.99
consumeBatchedInputEvent

s
51 4.51 4.57 0.34

accel
#Calls

(mean/SD)

Total Time

(mean/SD)
heart

#Calls

(mean/SD)

Total Time

(mean/SD)
baro

#Calls

(mean/SD)

Total Time

(mean/SD)

performLayoutAnd

PlaceSurfacesLockedInner
5 0 4.73 0.08

performLayoutAnd

PlaceSurfacesLockedInner
1 0 0.93 0.02

performLayoutAnd

PlaceSurfacesLockedInner
5 0 4.58 0.23

SparseArray.get 443 5.77 3.86 0.17 SparseArray.get 88 0 0.73 0.01 SparseArray.get 440 0 3.78 0.19

setInputWindows 10 0 2.69 0.12 MessageQueue.next 3 0 0.6 0.04 setInputWindows 10 0 2.45 0.02

MessageQueue.next 13 3.21 2.5 0.68 setInputWindows 2 0 0.54 0.04 addInputWindowHandleLw 80 0 2.11 0.12

Values.cleanUp 31 4.04 2.22 0.28 addInputWindowHandleLw 16 0 0.41 0 updateInputWindowsLw 10 0 1.96 0.1

have not observed similar idle anomalies on the Nexus 5 running
Android Lollipop.

Legacy support for device suspending. The current kernel mech-
anism for device suspending is decades-old; initially designed for
desktop and later adapted to handheld devices, the mechanism is
now cumbersome for wearable’s frequent, brief wakeups. Our mea-
surement shows that one suspending action spends a continuous pe-
riod of around 200 ms in kernel, a non-negligible overhead compa-
rable to one interaction itself that often lasts for a couple of seconds
(§2.1). Over the course of suspending, around 130 ms is in small
idle episodes, each lasting for a couple of ms.

Our investigation shows power management for I/O peripherals
as the deeper cause: in suspending a wearable device, the kernel
checks all peripherals to ensure they are ready to enter low-power
mode. Since a subset of peripherals take tens or even a couple of
hundred ms to be ready, the CPU has to repeatedly poll them and
sits idle in between. These peripherals include display controller,

battery temperature monitor, and MMC host controller, based on
our measurement. Note that this inefficiency roots in the Linux
kernel and is not tied to specific wearable devices.

5.2.2 Continuous Interaction

Recall that continuous interaction and the resultant UI anima-
tion, e.g. scrolling a web page, used to be among the most inten-
sive smartphone workloads [48]. In animating simple wearable UI,
however, performance overprovision has produced numerous idle
episodes.

As a user touches the device screen, the CPU processes a se-
quence of discrete input events, collaborates with the GPU to pe-
riodically render graphic frames, and sits idle between adjacent
frames. In our benchmarks, almost all frames in continuous ani-
mation are rendered within 8 ms each, which is less than 50% of
the 16 ms per-frame rendering budget (the displays of our test de-
vices, as in most today’s mobile devices, are refreshed at 60 Hz).



Table 4: Idle time in benchmarks. (Left) a breakdown based on their causes; (Right) the total idle time; its percentage over the benchmark
duration; the number of episodes; the percentage of idle time that we provide explanations for. Note that the two bar graphs have different
x-axis scales (time).
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As a result, many short idle episodes come hand in hand with con-
tinuous interaction. For instance, in navi that lasts for 4119 ms,
performance overprovision contributes 1805 ms idle time in about
630 episodes.

5.2.3 Design Implications

To cope with the excessive idle time, our findings suggest either
eliminating their origins or utilizing them more efficiently.

Hunting OS inefficiencies. Fixing the discovered inefficiencies
requires a rethink of the respective OS aspects, e.g. security policy
and power management. What is even more challenging is to un-
cover the unknown inefficiencies: despite our success in identifying
a few key cases, more subtle, non-deterministic ones are likely to
exist. While the spirit of IdleChecker discussed in Section 4 is
likely to apply, analyzing massive traces captured in the wild will
be vital.

To this end, it is crucial to have a lightweight tracer that captures
important software activities – from system events to function calls
– related to anomalous idle episodes. Designing the tracer, despite
a reminiscence of smartphone app tracking [44], raises two unique
challenges: first, tracing should only be activated upon the mani-
fest of anomalous idle, otherwise the amount of information will
be overwhelming; second, tracing should span across multiple pro-
cesses, most notably the OS daemons. Ultimately, we envision that
the wearable OS, through integration with tools, can offer account-
ability of idle episodes, clearly pinpointing which software entity
causes an idle episode and for what reason.

Filling idle time with useful work. As static power keeps increas-
ing on future devices [13], it is compelling to fill the power-hungry
idle episodes, e.g., those happened in continuous interaction, with
useful work. We expect that two approaches are promising. First,
compared to handheld, the wearable UI has fewer elements and
much less variation in rendering time. These characteristics, to-
gether with the observed performance overprovision, suggest to
lower the performance of CPU and GPU, e.g., by reducing their
clock rates. This will shrink idle episodes and improve system en-
ergy efficiency.

Second, the idle episodes during interaction are ideal opportu-
nities for predictive execution. Our rationales are twofold. First,
since wearable usage is driven by user’s daily routines, many tasks

can be foreseen, e.g., retrieving calendar from the paired phone.
Such prediction is already demonstrated as effective on smartphones [53,
33]. Second, due to the periodic rendering activity, the idle episodes
show regular, predictable timing patterns. This simplifies schedul-
ing predictive tasks and minimizing their contention with the fore-
ground UI animation.

5.3 Thread-level parallelism

• Short interactions exhibit substantial TLP, which is on a par with
desktop workloads.
• While apps are mostly single-threaded, OS daemons contribute
to TLP significantly.
• A wearable device needs at least two cores.

As described in Section 4, we measure TLP by forcing all four
CPU cores on at their default clock rate of 787 MHz. This is es-
sentially a “what-if” study: what core utilization can a wearable
system achieve, if it has plentiful cores?

Our experiments dispel the “one core is enough” myth men-
tioned in Section 4: despite that a wearable device is physically
equipped with multiple cores, all but one are forced offline by the
vendor. As shown in Figure 5(a), most benchmarks exhibit TLP
higher than 1.5; for three Wakeup benchmarks the TLP rises to
around 2. This TLP is unexpected to us, as it exceeds that of typical
smartphone workloads (1.44 on average [16]), and is on a par with
or even higher than many desktop workloads including Microsoft
Office (1.2), 3D gaming (1.6), and web browsing (2) [4] . The con-
currency values c2 – c4 shown in Figure 5(a) indicate that more
than one core are in use for a significant amount of time.

Why is the TLP high? A closer examination reveals two causes
of the high TLP. First, wearable’s short span of interaction creates
bursty TLP. Recall that compared to smartphones, user interaction
periods on wearables are much shorter (§1). Although similar TLP
peaks have been observed on smartphones [16], the peaks on wear-
able constitute a much larger fraction of the interaction span, lead-
ing to a higher TLP on average.
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Figure 5: The system-wide TLP and the concurrency values. Ci indicates the time fraction when i threads are simultaneously running over
(a) the whole benchmark duration or (b & c) the corresponding process execution duration.

Table 5: A comparison of popular mobile CPU cores

 Cortex-A7 
Current wearable 

Cortex-A9  
Smartphone 

Cortex-A53 
Next-gen wearable 

ISA ARMv7A ARMv7A ARMv8A 

Inst. Pipeline 
8-stage  

in-order 

8-stage  

out-of-order 

8-stage  

in-order 

Br. Predictor 

history buffer 
256-entry  4096-entry  3072-entry  

TLB entries  
L1: 10I/10D 

L2: 256  

L1: 32I/32D 

L2:128  

L1: 10I/10D 

L2: 512 

L1$ (I/D)  32KB/32KB 32KB/32KB 8-64KB/8-64KB 

L2$ 1024KB 512-1024KB 128-2048KB 
 

Second, the OS daemons, which often dominate CPU usage (§5.1),
contribute to the TLP substantially. As standalone processes, these
daemons receive app requests over IPC and serve them in paral-
lel with the app execution. In addition, an individual OS daemon is
multi-threaded and moderately parallel, e.g., to run multiple service
instances simultaneously. This can be seen from the concurrency
values of two major OS daemons shown in Figure 5(b) and (c).

The two causes also account for the particularly high TLP in
most Wakeup benchmarks: these benchmarks are OS-intensive as
shown in Figure 3(a); in response to a wake up event, multiple OS
services run in order to initialize the hardware or prepare them-
selves for the subsequent app execution, creating a surge of TLP.

The wearable apps, on the other hand, are mostly single-threaded.
Even the most parallel app, “Deadly Spikes” in benchmark game,
runs one thread for 93% of the time, i.e., its c1 value is as high as
93%.

Design Implications

OS structure. Our TLP measurement suggests the existing struc-
ture of Android Wear, i.e. realizing the OS personality as multi-

process, multi-threaded daemons, is a viable design. By promot-
ing TLP, the OS structure is capable of exploiting mobile multi-
cores which have already demonstrated the advantage of energy
efficiency [9]. Furthermore, the cost of app/daemon IPC is still a
much lower-order concern as compared to the expensive hot func-
tions shown in Section 5.1.

CPU core count. A wearable device needs to use at least two
cores. The measured TLP already shows the need for a second
core; eliminating the idle anomalies identified in Section 5.2 may
further boost TLP for the affected benchmarks, e.g., in Single Input.
To accommodate the lower, but still non-negligible, demand for
more than two cores (c3 and c4 in Figure 5(a)), a wearable device
may embrace even weaker cores to form 2+1 or 2+2 big.LITTLE
clusters.

One may wonder the impact of multicore on device cost or en-
ergy efficiency. First, the use of extra cores will incur no extra
cost: as mentioned in Section 4, the commodity Android wear de-
vices already possess quad cores – three of them are just forced off.
Second, previous study has already shown that catering to parallel
workloads with extra cores will benefit, rather than hurting, energy
efficiency [9], as the device can finish tasks sooner and fall into
sleep. We expect the extra cores, when they become idle, can be
aggressive power-gated in order to further reduce their static power.

5.4 Microarchitectural behaviors

• A significant mismatch exists between the OS and CPU microar-
chitecture, particularly in L1 icache, iTLB, and branch predictor.
• The mismatch is largely due to the OS code complexity, and will
not be eliminated by a unilateral enhancement of wearable CPU.

We have listed three typical mobile CPUs in Table 5. Among
them, Cortex-A9, a smartphone CPU, already showed microarchi-
tectural inefficiency in running popular smartphone apps [21]. Cortex-
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Figure 6: The measured microarchitectural behaviors of three major OS processes, covering their both user and kernel execution. Note that
the LLC miss ratio is normalized to the total LLC references.

A7, a lighter version of smartphone CPU, is used as the de facto
core for modern wearables. Cortex-A53 is a promising candidate
for the next-generation wearables.

Atop our A7-based devices, we characterize the microarchitec-
tural behaviors of the three major OS components, which collec-
tively dominate the global CPU usage (§5.1). Note that for each
OS component, we only show the benchmarks in which the com-
ponent uses more than 10% of the system CPU cycles.

Perhaps contrary to common perception, the seemingly simple
wearable workloads severely suffer from microarchitecture inef-
ficiency. As shown in Figure 6, the cycles-per-instruction (CPI)
ranges from 2 to 5, much higher than CPU-bound smartphone work-
loads such as web rendering (1.3 – 2.5) [21, 5]. The inefficiency
also far exceeds that of desktop workloads: the CPI of SPEC INT
on mobile CPUs rarely goes above 2 [5].

Through an analysis of the microarchitecture events, we have
made three observations.

First, L1 icache and iTLB misses are high. As shown in Figure 6,
Surface Flinger and Clockwork (and System Server in some bench-
marks) exhibit a L1 icache misses-per-kilo-instructions (MPKI) rang-
ing from 30 to 76. As reference points, the L1 icache MPKI in
smartphone web rendering is around 28 [21, 26, 5] and in heavy
smartphone gaming it is around 75 [21]; note that these misses were
observed on A9, whose L1 cache is no larger than A7 as shown in
Table 5. The fundamental reason lies in the complex OS code-

base and its poor code locality, a nature likely inherited from the
handheld OS [21]. In addition, the small iTLB of A7 may have
worsened the situation.

Second, branch misprediction is substantial. Across all the bench-
marks, the misprediction ratio is up to 28%, significantly higher
than various smartphone workloads (all below 14% [26]) and SPEC
INT (rarely above 17% [21]). The likely reasons are i) the complex
OS execution paths and ii) the simple branch predictor in A7.

Last, the L1 dTLB and L2 cache are moderately effective. The
misses are lower than data-intensive smartphone workloads, e.g.,
map or photo viewer [26], which have much larger working sets
than wearable workloads.

Design Implications

The serious mismatch motivates two possible remedies. First, the
CPU may evolve towards satisfying the demand of the OS. This
is exemplified by an enhanced branch predictor of A53 shown in
Table 5. However, one cannot satisfy all the microarchitectural de-
mands, especially a larger L1 icache, due to the wearable’s tight
power and area constraints. Second, and more importantly, the ob-
served inefficiencies – in icache, iTLB, and branch predictor – all
root in the high complexity of the OS code. Our findings in Sec-
tion 5.1 already suggest that the OS contains plentiful cruft. Should
the OS be trimmed down to match the simplicity of its apps, the
need for scaling up microarchitecture will significantly diminish.



6. RELATED WORK

Characterizing interactive workloads. Recognizing the signifi-
cance of interactive systems, a large body of prior work has studied
the key aspects including energy efficiency [8], latency [12, 54],
thread-level parallelism [15, 4], and file I/O behaviors [23, 28].
Although none directly addressed wearables, their methodologies
have been retrofit in our study.

Extensive study has been done towards understanding smartphone
workloads. Power characterization has been a central topic [8],
which highlights the importance of energy efficiency. Smartphone
benchmarks, such as BBench [21], MobileBench [40], and Moby [26],
often show non-traditional microarchitectural inefficiencies, includ-
ing high TLB miss rate and icache miss rate. Our work shows that
wearable workloads inherit many these behaviors due to the heavy
OS execution. Gao et al. find that smartphone workloads show lim-
ited TLP, concluding that they need no more than two cores [16].
Our study shows that TLP in a wearable system can be even higher
due to bursty OS workloads. ProfileDroid [52] contributes an ap-
proach for charactering smartphone apps at multiple layers; com-
pared to it, our work addresses whole system efficiency with a focus
on the OS components.

Little prior work has characterized wearable workloads. Among
them, our prior work [30] studies the power and heat behaviors of
Google glass. Our pilot study [31] on Android Wear reports power
measurement, describes our custom toolset, and presents prelimi-
nary evidence of inefficiency. Our work [36] studies computational
resource waste of the circular display commonly seen on wear-
ables. Min et al. studies the battery usage of smart watches [37];
WearDrive [25] creates synthetic benchmarks to shed light on wear-
able storage. Compare to them, this work provides a holistic under-
standing of wearable systems.

Diagnosing mobile software anomalies. Various tools have been
built to analyze smartphone software malfunctions, including quick
battery drain [42, 34], sluggish GUI [32], and app crashes [24].
They enable systematic analysis of smartphone apps and inspire
our work. Compared to them, we target a brand new platform –
wearable; our diagnosis focuses on the anomalies originated in the
OS, which have much wider impact than app anomalies.

While our IdleChecker (§4) may evoke user transaction track-
ers for smartphone such as AppInsight [44], it differs on three as-
pects: an offline diagnosis tool, IdleChecker does not instru-
ment apps; targeting a system-level analysis, it takes all tasks into
account instead of focusing on one single app; it identifies suspi-
cious source code instead of just reporting delay numbers.

Quantifying microarchitectural behaviors. Much work has
quantified microarchitectural behaviors of various workloads, in-
cluding data-intensive workloads [51], scale-out servers [14], desk-
top apps [27], and smartphone apps [21, 26], We retrofit their method-
ologies and use their data as reference points for comparison.

Novel wearable apps. There is a large body of recent work on
wearable, focusing on novel algorithms or app-specific systems.
For instance, RisQ [41] and TypingRing [39] target gesture recog-
nition; iShadow [35] tracks gaze in real time; Ha et al. build wear-
able for cognitive assistance [22]; Cornelius et al. focus on user
identification [11]. While we recognize their importance, we focus
on the OS internals of mass-market wearables.

7. CONCLUSIONS

We present an in-depth analysis of Android Wear, one of the
most popular wearable OSes. Targeting OS design, we examine
four key aspects – CPU usage, idle episodes, TLP, and microar-
chitectural behaviors – in fifteen benchmarks. We have reported
detailed quantification, distilled a number of new findings, and dis-
covered serious OS inefficiencies that were widespread but unknown
before. Together, our results clearly point out the system bottle-
necks for immediate optimization and have strong implications on
future wearable system software and hardware design.
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Appendix: Brief descriptions of top hot func-
tions listed in Table 3
computeOomAdjLocked Computing the Oom value for a given

process.

consumeBatchedInputEvents Consuming a batch of input events.

DirectByteBuffer.get Reading one byte from a memory-mapped
buffer.

InputEventReceiver.finishInputEvent Finishing the handling of
an input event.

MessageQueue.next Retrieving an inter-thread message.

Parcel.writeLongArray Serializing an array of Long integers to
an IPC parcel.

parseProcWakeLocks Parsing wakelock statistics in file
/proc/wakelocks.

performLayoutAndPlaceSurfacesLockedInner Updating system
UI and readjusting the look of each app window.

ProcessCpuTracker.collectStats Collecting CPU usage statistics.

removeObserverLocked Removing a given content observer.

setHalInteractiveModeLocked Informing the power HAL layer
about the change of interactive mode.

setLightLocked Setting the screen backlight level.

SparseArray.get Get an element from a SparseArray.

updateOomAdjLocked The wrapper of computeOomAdjLocked().
It updates the OOM values for all the processes.

Values.cleanUp Cleaning up the garbage-collected thread-local vari-
ables.


